1a76: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 16: Line 16:
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
   </jmolCheckbox>
   </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1a76 ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">

Revision as of 04:21, 10 February 2016

FLAP ENDONUCLEASE-1 FROM METHANOCOCCUS JANNASCHIIFLAP ENDONUCLEASE-1 FROM METHANOCOCCUS JANNASCHII

Structural highlights

1a76 is a 1 chain structure with sequence from Methanocaldococcus jannaschii. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum

Function

[FEN_METJA] Structure-specific nuclease with 5'-flap endonuclease and 5'-3' exonuclease activities involved in DNA replication and repair. During DNA replication, cleaves the 5'-overhanging flap structure that is generated by displacement synthesis when DNA polymerase encounters the 5'-end of a downstream Okazaki fragment. Binds the unpaired 3'-DNA end and kinks the DNA to facilitate 5' cleavage specificity. Cleaves one nucleotide into the double-stranded DNA from the junction in flap DNA, leaving a nick for ligation. Also involved in the base excision repair (BER) pathway. Acts as a genome stabilization factor that prevents flaps from equilibrating into structures that lead to duplications and deletions. Also possesses 5'-3' exonuclease activity on nicked or gapped double-stranded DNA.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Flap endonuclease-1 (FEN-1), a structure specific nuclease, is an essential enzyme for eukaryotic DNA replication and repair. The crystal structure of FEN-1 from Methanococcus jannaschii, determined at 2.0 A resolution, reveals an active site with two metal ions residing on top of a deep cleft where several conserved acidic residues are clustered. Near the active site, a long flexible loop comprised of many basic and aromatic residues forms a hole large enough to accommodate the DNA substrate. Deletion mutations in this loop significantly decreased the nuclease activity and specificity of FEN-1, suggesting that the loop is critical for recognition and cleavage of the junction between single and double-stranded regions of flap DNA.

The crystal structure of flap endonuclease-1 from Methanococcus jannaschii.,Hwang KY, Baek K, Kim HY, Cho Y Nat Struct Biol. 1998 Aug;5(8):707-13. PMID:9699635[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Hwang KY, Baek K, Kim HY, Cho Y. The crystal structure of flap endonuclease-1 from Methanococcus jannaschii. Nat Struct Biol. 1998 Aug;5(8):707-13. PMID:9699635 doi:http://dx.doi.org/10.1038/1406

1a76, resolution 2.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA