2jz4: Difference between revisions
No edit summary |
No edit summary |
||
Line 15: | Line 15: | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2jz4 ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> |
Revision as of 02:45, 10 February 2016
Putative 32 kDa myrosinase binding protein At3g16450.1 from Arabidopsis thalianaPutative 32 kDa myrosinase binding protein At3g16450.1 from Arabidopsis thaliana
Structural highlights
Warning: this is a large structure, and loading might take a long time or not happen at all. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe product of gene At3g16450.1 from Arabidopsis thaliana is a 32 kDa, 299-residue protein classified as resembling a myrosinase-binding protein (MyroBP). MyroBPs are found in plants as part of a complex with the glucosinolate-degrading enzyme myrosinase, and are suspected to play a role in myrosinase-dependent defense against pathogens. Many MyroBPs and MyroBP-related proteins are composed of repeated homologous sequences with unknown structure. We report here the three-dimensional structure of the At3g16450.1 protein from Arabidopsis, which consists of two tandem repeats. Because the size of the protein is larger than that amenable to high-throughput analysis by uniform (13)C/(15)N labeling methods, we used stereo-array isotope labeling (SAIL) technology to prepare an optimally (2)H/(13)C/(15)N-labeled sample. NMR data sets collected using the SAIL protein enabled us to assign (1)H, (13)C and (15)N chemical shifts to 95.5% of all atoms, even at a low concentration (0.2 mm) of protein product. We collected additional NOESY data and determined the three-dimensional structure using the cyana software package. The structure, the first for a MyroBP family member, revealed that the At3g16450.1 protein consists of two independent but similar lectin-fold domains, each composed of three beta-sheets. Structure of the putative 32 kDa myrosinase-binding protein from Arabidopsis (At3g16450.1) determined by SAIL-NMR.,Takeda M, Sugimori N, Torizawa T, Terauchi T, Ono AM, Yagi H, Yamaguchi Y, Kato K, Ikeya T, Jee J, Guntert P, Aceti DJ, Markley JL, Kainosho M FEBS J. 2008 Dec;275(23):5873-84. PMID:19021763[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|