1utb: Difference between revisions
No edit summary |
No edit summary |
||
Line 14: | Line 14: | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1utb ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> |
Revision as of 00:14, 10 February 2016
DNTR FROM BURKHOLDERIA SP. STRAIN DNTDNTR FROM BURKHOLDERIA SP. STRAIN DNT
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe transcriptional regulator DntR, a member of the LysR family, is a central element in a prototype bacterial cell-based biosensor for the detection of hazardous contamination of soil and groundwater by dinitrotoluenes. To optimise the sensitivity of the biosensor for such compounds we have chosen a rational design of the inducer-binding cavity based on knowledge of the three-dimensional structure of DntR. We report two crystal structures of DntR with acetate (resolution 2.6 angstroms) and thiocyanate (resolution 2.3 angstroms), respectively, occupying the inducer-binding cavity. These structures allow for the construction of models of DntR in complex with salicylate (Kd approximately or = 4 microM) and 2,4-dinitrotoluene that provide a basis for the design of mutant DntR with enhanced specificity for dinitrotoluenes. In both crystal structures DntR crystallises as a homodimer with a "head-to-tail" arrangement of monomers in the asymmetric unit. Analysis of the crystal structure has allowed the building of a full-length model of DntR in its biologically active homotetrameric form consisting of two "head-to-head" dimers. The implications of this model for the mechanism of transcription regulation by LysR proteins are discussed. Development of a bacterial biosensor for nitrotoluenes: the crystal structure of the transcriptional regulator DntR.,Smirnova IA, Dian C, Leonard GA, McSweeney S, Birse D, Brzezinski P J Mol Biol. 2004 Jul 9;340(3):405-18. PMID:15210343[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|