1jvm: Difference between revisions
No edit summary |
No edit summary |
||
Line 17: | Line 17: | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1jvm ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> |
Revision as of 23:03, 9 February 2016
KCSA POTASSIUM CHANNEL WITH TBA (TETRABUTYLAMMONIUM) AND RUBIDIUMKCSA POTASSIUM CHANNEL WITH TBA (TETRABUTYLAMMONIUM) AND RUBIDIUM
Structural highlights
Function[KCSA_STRLI] Acts as a pH-gated potassium ion channel; changing the cytosolic pH from 7 to 4 opens the channel, although it is not clear if this is the physiological stimulus for channel opening. Monovalent cation preference is K(+) > Rb(+) > NH4(+) >> Na(+) > Li(+).[1] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe K+ selectivity filter catalyses the dehydration, transfer and rehydration of a K+ ion in about ten nanoseconds. This physical process is central to the production of electrical signals in biology. Here we show how nearly diffusion-limited rates are achieved, by analysing ion conduction and the corresponding crystallographic ion distribution in the selectivity filter of the KcsA K+ channel. Measurements with K+ and its slightly larger analogue, Rb+, lead us to conclude that the selectivity filter usually contains two K+ ions separated by one water molecule. The two ions move in a concerted fashion between two configurations, K+-water-K+-water (1,3 configuration) and water-K+-water-K+ (2,4 configuration), until a third ion enters, displacing the ion on the opposite side of the queue. For K+, the energy difference between the 1,3 and 2,4 configurations is close to zero, the condition of maximum conduction rate. The energetic balance between these configurations is a clear example of evolutionary optimization of protein function. Energetic optimization of ion conduction rate by the K+ selectivity filter.,Morais-Cabral JH, Zhou Y, MacKinnon R Nature. 2001 Nov 1;414(6859):37-42. PMID:11689935[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|