3f8c: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal structure of multidrug binding transcriptional regulator LmrR complexed with Hoechst 33342== | |||
=== | <StructureSection load='3f8c' size='340' side='right' caption='[[3f8c]], [[Resolution|resolution]] 2.20Å' scene=''> | ||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[3f8c]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Laclm Laclm]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3F8C OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3F8C FirstGlance]. <br> | |||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=HT1:2-(4-ETHOXYPHENYL)-5-(4-METHYL-1-PIPERAZINYL)-2,5-BI-BENZIMIDAZOLE'>HT1</scene></td></tr> | |||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3f8b|3f8b]], [[3f8f|3f8f]]</td></tr> | |||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">lmrR ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=416870 LACLM])</td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3f8c FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3f8c OCA], [http://pdbe.org/3f8c PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3f8c RCSB], [http://www.ebi.ac.uk/pdbsum/3f8c PDBsum]</span></td></tr> | |||
</table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/f8/3f8c_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3f8c ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
LmrR is a PadR-related transcriptional repressor that regulates the production of LmrCD, a major multidrug ABC transporter in Lactococcus lactis. Transcriptional regulation is presumed to follow a drug-sensitive induction mechanism involving the direct binding of transporter ligands to LmrR. Here, we present crystal structures of LmrR in an apo state and in two drug-bound states complexed with Hoechst 33342 and daunomycin. LmrR shows a common topology containing a typical beta-winged helix-turn-helix domain with an additional C-terminal helix involved in dimerization. Its dimeric organization is highly unusual with a flat-shaped hydrophobic pore at the dimer centre serving as a multidrug-binding site. The drugs bind in a similar manner with their aromatic rings sandwiched in between the indole groups of two dimer-related tryptophan residues. Multidrug recognition is facilitated by conformational plasticity and the absence of drug-specific hydrogen bonds. Combined analyses using site-directed mutagenesis, fluorescence-based drug binding and protein-DNA gel shift assays reveal an allosteric coupling between the multidrug- and DNA-binding sites of LmrR that most likely has a function in the induction mechanism. | |||
Structure of the transcriptional regulator LmrR and its mechanism of multidrug recognition.,Madoori PK, Agustiandari H, Driessen AJ, Thunnissen AM EMBO J. 2008 Dec 18. PMID:19096365<ref>PMID:19096365</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
< | </div> | ||
<div class="pdbe-citations 3f8c" style="background-color:#fffaf0;"></div> | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Laclm]] | [[Category: Laclm]] | ||
[[Category: Agustiandari, H | [[Category: Agustiandari, H]] | ||
[[Category: Driessen, A J.M | [[Category: Driessen, A J.M]] | ||
[[Category: Madoori, P K | [[Category: Madoori, P K]] | ||
[[Category: Thunnissen, A M.W H | [[Category: Thunnissen, A M.W H]] | ||
[[Category: Transcription regulator]] | [[Category: Transcription regulator]] | ||
[[Category: Winged helix turn helix]] | [[Category: Winged helix turn helix]] |
Revision as of 19:24, 9 February 2016
Crystal structure of multidrug binding transcriptional regulator LmrR complexed with Hoechst 33342Crystal structure of multidrug binding transcriptional regulator LmrR complexed with Hoechst 33342
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedLmrR is a PadR-related transcriptional repressor that regulates the production of LmrCD, a major multidrug ABC transporter in Lactococcus lactis. Transcriptional regulation is presumed to follow a drug-sensitive induction mechanism involving the direct binding of transporter ligands to LmrR. Here, we present crystal structures of LmrR in an apo state and in two drug-bound states complexed with Hoechst 33342 and daunomycin. LmrR shows a common topology containing a typical beta-winged helix-turn-helix domain with an additional C-terminal helix involved in dimerization. Its dimeric organization is highly unusual with a flat-shaped hydrophobic pore at the dimer centre serving as a multidrug-binding site. The drugs bind in a similar manner with their aromatic rings sandwiched in between the indole groups of two dimer-related tryptophan residues. Multidrug recognition is facilitated by conformational plasticity and the absence of drug-specific hydrogen bonds. Combined analyses using site-directed mutagenesis, fluorescence-based drug binding and protein-DNA gel shift assays reveal an allosteric coupling between the multidrug- and DNA-binding sites of LmrR that most likely has a function in the induction mechanism. Structure of the transcriptional regulator LmrR and its mechanism of multidrug recognition.,Madoori PK, Agustiandari H, Driessen AJ, Thunnissen AM EMBO J. 2008 Dec 18. PMID:19096365[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|