1lxt: Difference between revisions
No edit summary |
No edit summary |
||
Line 17: | Line 17: | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1lxt ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> |
Revision as of 16:28, 9 February 2016
STRUCTURE OF PHOSPHOTRANSFERASE PHOSPHOGLUCOMUTASE FROM RABBITSTRUCTURE OF PHOSPHOTRANSFERASE PHOSPHOGLUCOMUTASE FROM RABBIT
Structural highlights
Function[PGM1_RABIT] This enzyme participates in both the breakdown and synthesis of glucose. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedData between 6.0 and 2.4 A resolution, collected at 253 K, wer used to refine a revised atomic model of muscle phosphoglucomutase: final crystallographic R factor = 16.3% (Rfree = 19.1%); final r.m.s. deviations from ideal bond lengths and angles = 0.018 A and 3.2 degrees, respectively. Features of the protein that were recognized only in the revised model include: the disposition of water molecules within domain-domain interfaces; two ion pairs buried in domain-domain interfaces, one of which is a structural arginine around which the active-site phosphoserine loop is wound; the basic architecture of the active-site 'crevice', which is a groove in a 1(1/3)-turn helix, open at both ends, that is produced by the interfacing of the four domains; the distorted hexacoordinate ligand sphere of the active-site Mg2+, where the enzymic phosphate group acts as a bidentate ligand; a pair of arginine residues in domain IV that form part of the enzymic phosphate-binding site (distal subsite) whose disposition in the two monomers of the asymmetric unit is affected unequally by distant crystallographic contacts; structural differences throughout domain IV, produced by these differing contacts, that may mimic solution differences induced by substrate binding; large differences in individually refined Debye-Waller thermal factors for corresponding main-chain atoms in monomers (1) and (2), suggesting a dynamic disorder within the crystal that may involve domain-size groups of residues; and a 'nucleophilic elbow' in the active site that resides in a topological environment differing from previous descriptions of this type of structure in other proteins. Structure of rabbit muscle phosphoglucomutase refined at 2.4 A resolution.,Liu Y, Ray WJ Jr, Baranidharan S Acta Crystallogr D Biol Crystallogr. 1997 Jul 1;53(Pt 4):392-405. PMID:15299905[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|