2h11: Difference between revisions
No edit summary |
No edit summary |
||
Line 20: | Line 20: | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2h11 ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
== References == | == References == |
Revision as of 11:02, 9 February 2016
Amino-terminal Truncated Thiopurine S-Methyltransferase Complexed with S-Adenosyl-L-HomocysteineAmino-terminal Truncated Thiopurine S-Methyltransferase Complexed with S-Adenosyl-L-Homocysteine
Structural highlights
Disease[TPMT_HUMAN] Defects in TPMT are the cause of thiopurine S-methyltransferase deficiency (TPMT deficiency) [MIM:610460]. TPMT is an enzyme involved in the normal metabolic inactivation of thiopurine drugs. These drugs are generally used as immunosupressants or cytotoxic drugs and are prescribed for a variety of clinical conditions including leukemia, autoimmune disease and organ transplantation. Patients with intermediate or no TPMT activity are at risk of toxicity after receiving standard doses of thiopurine drugs and it is shown that inter-individual differences in response to these drugs are largely determined by genetic variation at the TPMT locus. Function[TPMT_HUMAN] Catalyzes the S-methylation of thiopurine drugs such as 6-mercaptopurine.[1] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. References
|
|