1eol: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
|PDB= 1eol |SIZE=350|CAPTION= <scene name='initialview01'>1eol</scene>, resolution 2.1Å | |PDB= 1eol |SIZE=350|CAPTION= <scene name='initialview01'>1eol</scene>, resolution 2.1Å | ||
|SITE= | |SITE= | ||
|LIGAND= <scene name='pdbligand=BBS:4-TERT-BUTYLBENZENESULFONIC ACID'>BBS</scene> | |LIGAND= <scene name='pdbligand=BBS:4-TERT-BUTYLBENZENESULFONIC+ACID'>BBS</scene>, <scene name='pdbligand=CPI:6-CARBOXYPIPERIDINE'>CPI</scene>, <scene name='pdbligand=DOA:12-AMINO-DODECANOIC+ACID'>DOA</scene>, <scene name='pdbligand=NLE:NORLEUCINE'>NLE</scene> | ||
|ACTIVITY= [http://en.wikipedia.org/wiki/Thrombin Thrombin], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.4.21.5 3.4.21.5] | |ACTIVITY= <span class='plainlinks'>[http://en.wikipedia.org/wiki/Thrombin Thrombin], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.4.21.5 3.4.21.5] </span> | ||
|GENE= | |GENE= | ||
|DOMAIN= | |||
|RELATEDENTRY=[[1ihs|1IHS]] | |||
|RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1eol FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1eol OCA], [http://www.ebi.ac.uk/pdbsum/1eol PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=1eol RCSB]</span> | |||
}} | }} | ||
Line 14: | Line 17: | ||
==Overview== | ==Overview== | ||
Synthetic bivalent thrombin inhibitors comprise an active site blocking segment, a fibrinogen recognition exosite blocking segment, and a linker connecting these segments. Possible nonpolar interactions of the P1' and P3' residues of the linker with thrombin S1' and S3' subsites, respectively, were identified using the "Methyl Scan" method [Slon-Usakiewicz et al. (1997) Biochemistry 36, 13494-13502]. A series of inhibitors (4-tert-butylbenzenesulfonyl)-Arg-(D-pipecolic acid)-Xaa-Gly-Yaa-Gly-betaAla-Asp-Tyr-Glu-Pro-Ile-Pro-Glu-Glu-Ala- (be ta-cyclohexylalanine)-(D-Glu)-OH, in which nonpolar P1' residue Xaa or P3' residue Yaa was incorporated, were designed and improved the affinity to thrombin. Substitution of the P3' residue with D-phenylglycine or D-Phe improved the K(i) value to (9.5 +/- 0.6) x 10(-14) or 1.3 +/- 0.5 x 10(-13) M, respectively, compared to that of a reference inhibitor with Gly residues at Xaa and Yaa residues (K(i) = (2.4 +/- 0.5) x 10(-11) M). Similarly, substitution of the P1' residue with L-norleucine or L-beta-(2-thienyl)alanine lowered the K(i) values to (8.2 +/- 0.6) x 10(-14) or (5.1 +/- 0.4) x 10(-14) M, respectively. The linker Gly-Gly-Gly-betaAla of the inhibitors in the previous sentence was simplified with 12-aminododecanoic acid, resulting in further improvement of the K(i) values to (3.8 +/- 0.6) x 10(-14) or (1.7 +/- 0.4) x 10(-14) M, respectively. These K(i) values are equivalent to that of natural hirudin (2.2 x 10(-14) M), yet the size of the synthetic inhibitors (2 kD) is only one-third that of hirudin (7 kD). Two inhibitors, with L-norleucine or L-beta-(2-thienyl)alanine at the P1' residue and the improved linker of 12-aminododecanoic acid, were crystallized in complex with human alpha-thrombin. The crystal structures of these complexes were solved and refined to 2.1 A resolution. The Lys(60F) side chain of thrombin moved significantly and formed a large nonpolar S1' subsite to accommodate the bulky P1' residue. | Synthetic bivalent thrombin inhibitors comprise an active site blocking segment, a fibrinogen recognition exosite blocking segment, and a linker connecting these segments. Possible nonpolar interactions of the P1' and P3' residues of the linker with thrombin S1' and S3' subsites, respectively, were identified using the "Methyl Scan" method [Slon-Usakiewicz et al. (1997) Biochemistry 36, 13494-13502]. A series of inhibitors (4-tert-butylbenzenesulfonyl)-Arg-(D-pipecolic acid)-Xaa-Gly-Yaa-Gly-betaAla-Asp-Tyr-Glu-Pro-Ile-Pro-Glu-Glu-Ala- (be ta-cyclohexylalanine)-(D-Glu)-OH, in which nonpolar P1' residue Xaa or P3' residue Yaa was incorporated, were designed and improved the affinity to thrombin. Substitution of the P3' residue with D-phenylglycine or D-Phe improved the K(i) value to (9.5 +/- 0.6) x 10(-14) or 1.3 +/- 0.5 x 10(-13) M, respectively, compared to that of a reference inhibitor with Gly residues at Xaa and Yaa residues (K(i) = (2.4 +/- 0.5) x 10(-11) M). Similarly, substitution of the P1' residue with L-norleucine or L-beta-(2-thienyl)alanine lowered the K(i) values to (8.2 +/- 0.6) x 10(-14) or (5.1 +/- 0.4) x 10(-14) M, respectively. The linker Gly-Gly-Gly-betaAla of the inhibitors in the previous sentence was simplified with 12-aminododecanoic acid, resulting in further improvement of the K(i) values to (3.8 +/- 0.6) x 10(-14) or (1.7 +/- 0.4) x 10(-14) M, respectively. These K(i) values are equivalent to that of natural hirudin (2.2 x 10(-14) M), yet the size of the synthetic inhibitors (2 kD) is only one-third that of hirudin (7 kD). Two inhibitors, with L-norleucine or L-beta-(2-thienyl)alanine at the P1' residue and the improved linker of 12-aminododecanoic acid, were crystallized in complex with human alpha-thrombin. The crystal structures of these complexes were solved and refined to 2.1 A resolution. The Lys(60F) side chain of thrombin moved significantly and formed a large nonpolar S1' subsite to accommodate the bulky P1' residue. | ||
==About this Structure== | ==About this Structure== | ||
Line 31: | Line 31: | ||
[[Category: Sivaraman, J.]] | [[Category: Sivaraman, J.]] | ||
[[Category: Slon-Usakiewicz, J J.]] | [[Category: Slon-Usakiewicz, J J.]] | ||
[[Category: crystal structure]] | [[Category: crystal structure]] | ||
[[Category: serine protease]] | [[Category: serine protease]] | ||
[[Category: thrombin inhibitor]] | [[Category: thrombin inhibitor]] | ||
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun Mar 30 20:06:46 2008'' |