1ta1: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 17: Line 17:
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
   </jmolCheckbox>
   </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1ta1 ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">

Revision as of 10:01, 9 February 2016

H141C mutant of rat liver arginase IH141C mutant of rat liver arginase I

Structural highlights

1ta1 is a 3 chain structure with sequence from Buffalo rat. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
Gene:ARG1 (Buffalo rat)
Activity:Arginase, with EC number 3.5.3.1
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Rat liver arginase (arginase I) is potently inactivated by diethyl pyrocarbonate, with a second-order rate constant of 113M(-1)s(-1) for the inactivation process at pH 7.0, 25 degrees C. Partial protection from inactivation is provided by the product of the reaction, l-ornithine, while nearly complete protection is afforded by the inhibitor pair, l-ornithine and borate. The role of H141 has been probed by mutagenesis, chemical modulation, and X-ray diffraction. The hyper-reactivity of H141 towards diethyl pyrocarbonate can be explained by its proximity to E277. A proton shuttling role for H141 is supported by its conformational mobility observed among the known arginase structures. H141 is proposed to serve as an acid/base catalyst, deprotonating the metal-bridging water molecule to generate the metal-bridging hydroxide nucleophile, and by protonating the amino group of the product to facilitate its departure.

Probing the role of the hyper-reactive histidine residue of arginase.,Colleluori DM, Reczkowski RS, Emig FA, Cama E, Cox JD, Scolnick LR, Compher K, Jude K, Han S, Viola RE, Christianson DW, Ash DE Arch Biochem Biophys. 2005 Dec 1;444(1):15-26. Epub 2005 Oct 13. PMID:16266687[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Colleluori DM, Reczkowski RS, Emig FA, Cama E, Cox JD, Scolnick LR, Compher K, Jude K, Han S, Viola RE, Christianson DW, Ash DE. Probing the role of the hyper-reactive histidine residue of arginase. Arch Biochem Biophys. 2005 Dec 1;444(1):15-26. Epub 2005 Oct 13. PMID:16266687 doi:10.1016/j.abb.2005.09.009

1ta1, resolution 2.50Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA