1iy1: Difference between revisions
No edit summary |
No edit summary |
||
Line 18: | Line 18: | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1iy1 ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> |
Revision as of 08:17, 9 February 2016
Crystal structure of the FtsH ATPase domain with ADP from Thermus thermophilusCrystal structure of the FtsH ATPase domain with ADP from Thermus thermophilus
Structural highlights
Function[FTSH_THET8] Acts as a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. Plays a role in the quality control of integral membrane proteins (By similarity).[HAMAP-Rule:MF_01458] Degrades preferentially unfolded substrates in a processive, ATP-dependent manner, usually after hydrophobic residues.[HAMAP-Rule:MF_01458] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedFtsH is a cytoplasmic membrane-integrated, ATP-dependent metalloprotease, which processively degrades both cytoplasmic and membrane proteins in concert with unfolding. The FtsH protein is divided into the N-terminal transmembrane region and the larger C-terminal cytoplasmic region, which consists of an ATPase domain and a protease domain. We have determined the crystal structures of the Thermus thermophilus FtsH ATPase domain in the nucleotide-free and AMP-PNP- and ADP-bound states, in addition to the domain with the extra preceding segment. Combined with the mapping of the putative substrate binding region, these structures suggest that FtsH internally forms a hexameric ring structure, in which ATP binding could cause a conformational change to facilitate transport of substrates into the protease domain through the central pore. Hexameric ring structure of the ATPase domain of the membrane-integrated metalloprotease FtsH from Thermus thermophilus HB8.,Niwa H, Tsuchiya D, Makyio H, Yoshida M, Morikawa K Structure. 2002 Oct;10(10):1415-23. PMID:12377127[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References |
|