2c4b: Difference between revisions
No edit summary |
No edit summary |
||
Line 18: | Line 18: | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2c4b ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> |
Revision as of 04:13, 9 February 2016
INHIBITOR CYSTINE KNOT PROTEIN MCOEETI FUSED TO THE CATALYTICALLY INACTIVE BARNASE MUTANT H102AINHIBITOR CYSTINE KNOT PROTEIN MCOEETI FUSED TO THE CATALYTICALLY INACTIVE BARNASE MUTANT H102A
Structural highlights
Function[RNBR_BACAM] Hydrolyzes phosphodiester bonds in RNA, poly- and oligoribonucleotides resulting in 3'-nucleoside monophosphates via 2',3'-cyclophosphate intermediates. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedWe present a fusion system suited to determine the crystal structure of small disulfide-rich proteins. McoEeTI, a hybrid inhibitor cystine knot microprotein, was produced as a soluble fusion to a catalytically inactive variant of the RNAse barnase in Escherichia coli. Functioning as a versatile tag, barnase facilitated purification, crystallization and high-resolution structure determination. Flexibility of the linker region allows for different relative orientations of barnase and the fusion partner in two crystallographically independent molecules and may thereby facilitate crystal packing. Nevertheless, the linker region is well ordered in both molecules. This system may prove more generally useful to determine the crystal structure of peptides and small proteins. Barnase fusion as a tool to determine the crystal structure of the small disulfide-rich protein McoEeTI.,Niemann HH, Schmoldt HU, Wentzel A, Kolmar H, Heinz DW J Mol Biol. 2006 Feb 10;356(1):1-8. Epub 2005 Nov 21. PMID:16337652[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|