1g83: Difference between revisions
No edit summary |
No edit summary |
||
Line 17: | Line 17: | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1g83 ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> |
Revision as of 03:46, 9 February 2016
CRYSTAL STRUCTURE OF FYN SH3-SH2CRYSTAL STRUCTURE OF FYN SH3-SH2
Structural highlights
Function[FYN_HUMAN] Non-receptor tyrosine-protein kinase that plays a role in many biological processes including regulation of cell growth and survival, cell adhesion, integrin-mediated signaling, cytoskeletal remodeling, cell motility, immune response and axon guidance. Inactive FYN is phosphorylated on its C-terminal tail within the catalytic domain. Following activation by PKA, the protein subsequently associates with PTK2/FAK1, allowing PTK2/FAK1 phosphorylation, activation and targeting to focal adhesions. Involved in the regulation of cell adhesion and motility through phosphorylation of CTNNB1 (beta-catenin) and CTNND1 (delta-catenin). Regulates cytoskeletal remodeling by phosphorylating several proteins including the actin regulator WAS and the microtubule-associated proteins MAP2 and MAPT. Promotes cell survival by phosphorylating AGAP2/PIKE-A and preventing its apoptotic cleavage. Participates in signal transduction pathways that regulate the integrity of the glomerular slit diaphragm (an essential part of the glomerular filter of the kidney) by phosphorylating several slit diaphragm components including NPHS1, KIRREL and TRPC6. Plays a role in neural processes by phosphorylating DPYSL2, a multifunctional adapter protein within the central nervous system, ARHGAP32, a regulator for Rho family GTPases implicated in various neural functions, and SNCA, a small pre-synaptic protein. Participates in the downstream signaling pathways that lead to T-cell differentiation and proliferation following T-cell receptor (TCR) stimulation. Also participates in negative feedback regulation of TCR signaling through phosphorylation of PAG1, thereby promoting interaction between PAG1 and CSK and recruitment of CSK to lipid rafts. CSK maintains LCK and FYN in an inactive form. Promotes CD28-induced phosphorylation of VAV1.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe regulatory fragment of Src kinases, comprising Src homology (SH) 3 and SH2 domains, is responsible for controlled repression of kinase activity. We have used a multidisciplinary approach involving crystallography, NMR, and isothermal titration calorimetry to study the regulatory fragment of Fyn (FynSH32) and its interaction with a physiological activator: a fragment of focal adhesion kinase that contains both phosphotyrosine and polyproline motifs. Although flexible, the preferred disposition of SH3 and SH2 domains in FynSH32 resembles the inactive forms of Hck and Src, differing significantly from LckSH32. This difference, which results from variation in the SH3-SH2 linker sequences, will affect the potential of the regulatory fragments to repress kinase activity. This surprising result implies that the mechanism of repression of Src family members may vary, explaining functional distinctions between Fyn and Lck. The interaction between FynSH32 and focal adhesion kinase is restricted to the canonical SH3 and SH2 binding sites and does not affect the dynamic independence of the two domains. Consequently, the interaction shows no enhancement by an avidity effect. Such an interaction may have evolved to gain specificity through an extended recognition site while maintaining rapid dissociation after signaling. The role of the Src homology 3-Src homology 2 interface in the regulation of Src kinases.,Arold ST, Ulmer TS, Mulhern TD, Werner JM, Ladbury JE, Campbell ID, Noble ME J Biol Chem. 2001 May 18;276(20):17199-205. Epub 2001 Feb 2. PMID:11278857[20] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|