1yyf: Difference between revisions
No edit summary |
No edit summary |
||
Line 17: | Line 17: | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1yyf ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> |
Revision as of 01:33, 9 February 2016
Correction of X-ray Intensities from an HslV-HslU co-crystal containing lattice translocation defectsCorrection of X-ray Intensities from an HslV-HslU co-crystal containing lattice translocation defects
Structural highlights
Function[HSLU_ECOLI] ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis.[1] [2] [3] [4] [5] [6] [7] [CLPQ_BACSU] Protease subunit of a proteasome-like degradation complex.[8] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedBecause of lattice-translocation defects, two identical but translated lattices can coexist as a single coherent mosaic block in a crystal. The observed structure in such cases is a weighted sum of two identical but translated structures, one from each lattice; the observed structure factors are a weighted vector sum of the structure factors with identical unit amplitudes but shifted phases. The correction of X-ray intensities from a single crystal containing these defects of the hybrid HslV-HslU complex, which consists of Escherichia coli HslU and Bacillus subtilis HslV (also known as CodW), is reported. When intensities are not corrected, a biologically irrelevant complex (with CodW from one lattice and HslU from another) is implied to exist. Only upon correction does a biologically functional CodW-HslU complex structure emerge. Correction of X-ray intensities from an HslV-HslU co-crystal containing lattice-translocation defects.,Wang J, Rho SH, Park HH, Eom SH Acta Crystallogr D Biol Crystallogr. 2005 Jul;61(Pt 7):932-41. Epub 2005, Jun 24. PMID:15983416[9] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|