1dup: Difference between revisions
No edit summary |
No edit summary |
||
Line 16: | Line 16: | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1dup ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> |
Latest revision as of 00:34, 9 February 2016
DEOXYURIDINE 5'-TRIPHOSPHATE NUCLEOTIDO HYDROLASE (D-UTPASE)DEOXYURIDINE 5'-TRIPHOSPHATE NUCLEOTIDO HYDROLASE (D-UTPASE)
Structural highlights
Function[DUT_ECOLI] This enzyme is involved in nucleotide metabolism: it produces dUMP, the immediate precursor of thymidine nucleotides and it decreases the intracellular concentration of dUTP so that uracil cannot be incorporated into DNA.[HAMAP-Rule:MF_00116] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe enzyme dUTPase catalyses the hydrolysis of dUTP and maintains a low intracellular concentration of dUTP so that uracil cannot be incorporated into DNA. dUTPase from Escherichia coli is strictly specific for its dUTP substrate, the active site discriminating between nucleotides with respect to the sugar moiety as well as the pyrimidine base. Here we report the three-dimensional structure of E. coli dUTPase determined by X-ray crystallography at a resolution of 1.9 A. The enzyme is a symmetrical trimer, and of the 152 amino acid residues in the subunit, the first 136 are visible in the crystal structure. The tertiary structure resembles a jelly-roll fold and does not show the 'classical' nucleotide-binding domain. In the quaternary structure there is a complex interaction between the subunits that may be important in catalysis. This possibility is supported by the location of conserved elements in the sequence. Crystal structure of a dUTPase.,Cedergren-Zeppezauer ES, Larsson G, Nyman PO, Dauter Z, Wilson KS Nature. 1992 Feb 20;355(6362):740-3. PMID:1311056[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|