3f0u: Difference between revisions
No edit summary |
No edit summary |
||
Line 7: | Line 7: | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">dfrB ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=273036 STAAB])</td></tr> | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">dfrB ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=273036 STAAB])</td></tr> | ||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Dihydrofolate_reductase Dihydrofolate reductase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.5.1.3 1.5.1.3] </span></td></tr> | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Dihydrofolate_reductase Dihydrofolate reductase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.5.1.3 1.5.1.3] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3f0u FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3f0u OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3f0u RCSB], [http://www.ebi.ac.uk/pdbsum/3f0u PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3f0u FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3f0u OCA], [http://pdbe.org/3f0u PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3f0u RCSB], [http://www.ebi.ac.uk/pdbsum/3f0u PDBsum]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
Line 19: | Line 19: | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3f0u ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
Line 29: | Line 29: | ||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
</div> | </div> | ||
<div class="pdbe-citations 3f0u" style="background-color:#fffaf0;"></div> | |||
==See Also== | ==See Also== |
Revision as of 22:36, 8 February 2016
Staphylococcus aureus F98Y mutant dihydrofolate reductase complexed with NADPH and 2,4-Diamino-5-[3-(3-methoxy-5-phenylphenyl)but-1-ynyl]-6-methylpyrimidineStaphylococcus aureus F98Y mutant dihydrofolate reductase complexed with NADPH and 2,4-Diamino-5-[3-(3-methoxy-5-phenylphenyl)but-1-ynyl]-6-methylpyrimidine
Structural highlights
Function[Q2YY41_STAAB] Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis (By similarity).[PIRNR:PIRNR000194] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedBoth hospital- and community-acquired Staphylococcus aureus infections have become major health concerns in terms of morbidity, suffering and cost. Trimethoprim-sulfamethoxazole (TMP-SMZ) is an alternative treatment for methicillin-resistant S. aureus (MRSA) infections. However, TMP-resistant strains have arisen with point mutations in dihydrofolate reductase (DHFR), the target for TMP. A single point mutation, F98Y, has been shown biochemically to confer the majority of this resistance to TMP. Using a structure-based approach, we have designed a series of novel propargyl-linked DHFR inhibitors that are active against several trimethoprim-resistant enzymes. We screened this series against wild-type and mutant (F98Y) S. aureus DHFR and found that several are active against both enzymes and specifically that the meta-biphenyl class of these inhibitors is the most potent. In order to understand the structural basis of this potency, we determined eight high-resolution crystal structures: four each of the wild-type and mutant DHFR enzymes bound to various propargyl-linked DHFR inhibitors. In addition to explaining the structure-activity relationships, several of the structures reveal a novel conformation for the cofactor, NADPH. In this new conformation that is predominantly associated with the mutant enzyme, the nicotinamide ring is displaced from its conserved location and three water molecules complete a network of hydrogen bonds between the nicotinamide ring and the protein. In this new position, NADPH has reduced interactions with the inhibitor. An equilibrium between the two conformations of NADPH, implied by their occupancies in the eight crystal structures, is influenced both by the ligand and the F98Y mutation. The mutation induced equilibrium between two NADPH-binding conformations may contribute to decrease TMP binding and thus may be responsible for TMP resistance. Crystal structures of wild-type and mutant methicillin-resistant Staphylococcus aureus dihydrofolate reductase reveal an alternate conformation of NADPH that may be linked to trimethoprim resistance.,Frey KM, Liu J, Lombardo MN, Bolstad DB, Wright DL, Anderson AC J Mol Biol. 2009 Apr 17;387(5):1298-308. Epub 2009 Feb 26. PMID:19249312[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|