1oxa: Difference between revisions
No edit summary |
No edit summary |
||
Line 16: | Line 16: | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1oxa ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> |
Revision as of 20:19, 8 February 2016
CYTOCHROME P450 (DONOR:O2 OXIDOREDUCTASE)CYTOCHROME P450 (DONOR:O2 OXIDOREDUCTASE)
Structural highlights
Function[CPXJ_SACEN] Catalyzes the NADPH-dependent conversion of 6-deoxyerythronolide B (6-DEB) to erythronolide B (EB) by the insertion of an oxygen at the 6S position of 6-DEB. Requires the participation of a ferredoxin and a ferredoxin reductase for the transfer of electrons from NADPH to the monooxygenase.[1] [2] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedCytochrome P450eryF catalyzes the 6S-hydroxylation of 6-deoxyerythronolide B, the initial reaction in a multistep pathway to convert 6-deoxyerythronolide B into the antibiotic, erythromycin. The overall structure of P450eryF is similar to that of P450cam but differs in the exact positioning of several alpha-helices. The largest difference occurs in the B' helix and results in the enlargement of the substrate-binding pocket of P450eryF. The substrate is positioned with the macrolide ring perpendicular to the haem plane and contacts seven hydrophobic residues and three solvent molecules. The substrate participates in a network of hydrogen bonds that may provide a proton shuttle pathway in the oxygen cleavage reaction. Structure of cytochrome P450eryF involved in erythromycin biosynthesis.,Cupp-Vickery JR, Poulos TL Nat Struct Biol. 1995 Feb;2(2):144-53. PMID:7749919[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|