1fez: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 16: Line 16:
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
   </jmolCheckbox>
   </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1fez ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">

Revision as of 17:59, 8 February 2016

THE CRYSTAL STRUCTURE OF BACILLUS CEREUS PHOSPHONOACETALDEHYDE HYDROLASE COMPLEXED WITH TUNGSTATE, A PRODUCT ANALOGTHE CRYSTAL STRUCTURE OF BACILLUS CEREUS PHOSPHONOACETALDEHYDE HYDROLASE COMPLEXED WITH TUNGSTATE, A PRODUCT ANALOG

Structural highlights

1fez is a 4 chain structure with sequence from Atcc 14579. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum

Function

[PHNX_BACCE] Involved in phosphonate degradation.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Phosphonoacetaldehyde hydrolase (phosphonatase) catalyzes the hydrolysis of phosphonoacetaldehyde to acetaldehyde and phosphate using Mg(II) as cofactor. The reaction proceeds via a novel bicovalent catalytic mechanism in which an active-site nucleophile abstracts the phosphoryl group from the Schiff-base intermediate formed from Lys53 and phosphonoacetaldehyde. In this study, the X-ray crystal structure of the Bacillus cereus phosphonatase homodimer complexed with the phosphate (product) analogue tungstate (K(i) = 50 microM) and the Mg(II) cofactor was determined to 3.0 A resolution with an R(cryst) = 0.248 and R(free) = 0.284. Each monomer is made up of an alpha/beta core domain consisting of a centrally located six-stranded parallel beta-sheet surrounded by six alpha-helices. Two flexible, solvated linkers connect to a small cap domain (residues 21-99) that consists of an antiparallel, five-helix bundle. The subunit-subunit interface, formed by the symmetrical packing of the two alpha8 helices from the respective core domains, is stabilized through the hydrophobic effect derived from the desolvation of paired Met171, Trp164, Tyr162, Tyr167, and Tyr176 side chains. The active site is located at the domain-domain interface of each subunit. The Schiff base forming Lys53 is positioned on the cap domain while tungstate and Mg(II) are bound to the core domain. Mg(II) ligands include two oxygens of the tungstate ligand, one oxygen of the carboxylates of Asp12 and Asp186, the backbone carbonyl oxygen of Ala14, and a water that forms a hydrogen bond with the carboxylate of Asp190 and Thr187. The guanidinium group of Arg160 binds tungstate and the proposed nucleophile Asp12, which is suitably positioned for in-line attack at the tungsten atom. The side chains of the core domain residue Tyr128 and the cap domain residues Cys22 and Lys53 are located nearby. The identity of Asp12 as the active-site nucleophile was further evidenced by the observed removal of catalytic activity resulting from Asp12Ala substitution. The similarity of backbone folds observed in phosphonatase and the 2-haloacid dehalogenase of the HAD enzyme superfamily indicated common ancestry. Superposition of the two structures revealed a conserved active-site scaffold having distinct catalytic stations. Analysis of the usage of polar amino acid residues at these stations by the dehalogenases, phosphonatases, phosphatases, and phosphomutases of the HAD superfamily suggests possible ways in which the active site of an ancient enzyme ancestor might have been diversified for catalysis of C-X, P-C, and P-O bond cleavage reactions.

The crystal structure of bacillus cereus phosphonoacetaldehyde hydrolase: insight into catalysis of phosphorus bond cleavage and catalytic diversification within the HAD enzyme superfamily.,Morais MC, Zhang W, Baker AS, Zhang G, Dunaway-Mariano D, Allen KN Biochemistry. 2000 Aug 29;39(34):10385-96. PMID:10956028[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Morais MC, Zhang W, Baker AS, Zhang G, Dunaway-Mariano D, Allen KN. The crystal structure of bacillus cereus phosphonoacetaldehyde hydrolase: insight into catalysis of phosphorus bond cleavage and catalytic diversification within the HAD enzyme superfamily. Biochemistry. 2000 Aug 29;39(34):10385-96. PMID:10956028

1fez, resolution 3.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA