2cg3: Difference between revisions
No edit summary |
No edit summary |
||
Line 16: | Line 16: | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2cg3 ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> |
Revision as of 12:31, 8 February 2016
CRYSTAL STRUCTURE OF SDSA1, AN ALKYLSULFATASE FROM PSEUDOMONAS AERUGINOSA.CRYSTAL STRUCTURE OF SDSA1, AN ALKYLSULFATASE FROM PSEUDOMONAS AERUGINOSA.
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedPseudomonas aeruginosa is both a ubiquitous environmental bacterium and an opportunistic human pathogen. A remarkable metabolic versatility allows it to occupy a multitude of ecological niches, including wastewater treatment plants and such hostile environments as the human respiratory tract. P. aeruginosa is able to degrade and metabolize biocidic SDS, the detergent of most commercial personal hygiene products. We identify SdsA1 of P. aeruginosa as a secreted SDS hydrolase that allows the bacterium to use primary sulfates such as SDS as a sole carbon or sulfur source. Homologues of SdsA1 are found in many pathogenic and some nonpathogenic bacteria. The crystal structure of SdsA1 reveals three distinct domains. The N-terminal catalytic domain with a binuclear Zn2+ cluster is a distinct member of the metallo-beta-lactamase fold family, the central dimerization domain ensures resistance to high concentrations of SDS, whereas the C-terminal domain provides a hydrophobic groove, presumably to recruit long aliphatic substrates. Crystal structures of apo-SdsA1 and complexes with substrate analog and products indicate an enzymatic mechanism involving a water molecule indirectly activated by the Zn2+ cluster. The enzyme SdsA1 thus represents a previously undescribed class of sulfatases that allows P. aeruginosa to survive and thrive under otherwise bacteriocidal conditions. The crystal structure of SdsA1, an alkylsulfatase from Pseudomonas aeruginosa, defines a third class of sulfatases.,Hagelueken G, Adams TM, Wiehlmann L, Widow U, Kolmar H, Tummler B, Heinz DW, Schubert WD Proc Natl Acad Sci U S A. 2006 May 16;103(20):7631-6. Epub 2006 May 9. PMID:16684886[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References |
|