1di5: Difference between revisions

No edit summary
No edit summary
Line 4: Line 4:
|PDB= 1di5 |SIZE=350|CAPTION= <scene name='initialview01'>1di5</scene>, resolution 2.2&Aring;
|PDB= 1di5 |SIZE=350|CAPTION= <scene name='initialview01'>1di5</scene>, resolution 2.2&Aring;
|SITE=  
|SITE=  
|LIGAND= <scene name='pdbligand=NA:SODIUM ION'>NA</scene>
|LIGAND= <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>
|ACTIVITY= [http://en.wikipedia.org/wiki/Lysozyme Lysozyme], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.17 3.2.1.17]  
|ACTIVITY= <span class='plainlinks'>[http://en.wikipedia.org/wiki/Lysozyme Lysozyme], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.17 3.2.1.17] </span>
|GENE=  
|GENE=  
|DOMAIN=
|RELATEDENTRY=[[1cj6|1CJ6]], [[1di3|1DI3]], [[1di4|1DI4]]
|RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1di5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1di5 OCA], [http://www.ebi.ac.uk/pdbsum/1di5 PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=1di5 RCSB]</span>
}}
}}


Line 14: Line 17:
==Overview==
==Overview==
To clarify the role of amino acid residues at turns in the conformational stability and folding of a globular protein, six mutant human lysozymes deleted or substituted at turn structures were investigated by calorimetry, GuHCl denaturation experiments, and X-ray crystal analysis. The thermodynamic properties of the mutant and wild-type human lysozymes were compared and discussed on the basis of their three-dimensional structures. For the deletion mutants, Delta47-48 and Delta101, the deleted residues are in turns on the surface and are absent in human alpha-lactalbumin, which is homologous to human lysozyme in amino acid sequence and tertiary structure. The stability of both mutants would be expected to increase due to a decrease in conformational entropy in the denatured state; however, both proteins were destabilized. The destabilizations were mainly caused by the disappearance of intramolecular hydrogen bonds. Each part deleted was recovered by the turn region like the alpha-lactalbumin structure, but there were differences in the main-chain conformation of the turn between each deletion mutant and alpha-lactalbumin even if the loop length was the same. For the point mutants, R50G, Q58G, H78G, and G37Q, the main-chain conformations of these substitution residues located in turns adopt a left-handed helical region in the wild-type structure. It is thought that the left-handed non-Gly residue has unfavorable conformational energy compared to the left-handed Gly residue. Q58G was stabilized, but the others had little effect on the stability. The structural analysis revealed that the turns could rearrange the main-chain conformation to accommodate the left-handed non-Gly residues. The present results indicate that turn structures are able to change their main-chain conformations, depending upon the side-chain features of amino acid residues on the turns. Furthermore, stopped-flow GuHCl denaturation experiments on the six mutants were performed. The effects of mutations on unfolding-refolding kinetics were significantly different among the mutant proteins. The deletion/substitutions in turns located in the alpha-domain of human lysozyme affected the refolding rate, indicating the contribution of turn structures to the folding of a globular protein.
To clarify the role of amino acid residues at turns in the conformational stability and folding of a globular protein, six mutant human lysozymes deleted or substituted at turn structures were investigated by calorimetry, GuHCl denaturation experiments, and X-ray crystal analysis. The thermodynamic properties of the mutant and wild-type human lysozymes were compared and discussed on the basis of their three-dimensional structures. For the deletion mutants, Delta47-48 and Delta101, the deleted residues are in turns on the surface and are absent in human alpha-lactalbumin, which is homologous to human lysozyme in amino acid sequence and tertiary structure. The stability of both mutants would be expected to increase due to a decrease in conformational entropy in the denatured state; however, both proteins were destabilized. The destabilizations were mainly caused by the disappearance of intramolecular hydrogen bonds. Each part deleted was recovered by the turn region like the alpha-lactalbumin structure, but there were differences in the main-chain conformation of the turn between each deletion mutant and alpha-lactalbumin even if the loop length was the same. For the point mutants, R50G, Q58G, H78G, and G37Q, the main-chain conformations of these substitution residues located in turns adopt a left-handed helical region in the wild-type structure. It is thought that the left-handed non-Gly residue has unfavorable conformational energy compared to the left-handed Gly residue. Q58G was stabilized, but the others had little effect on the stability. The structural analysis revealed that the turns could rearrange the main-chain conformation to accommodate the left-handed non-Gly residues. The present results indicate that turn structures are able to change their main-chain conformations, depending upon the side-chain features of amino acid residues on the turns. Furthermore, stopped-flow GuHCl denaturation experiments on the six mutants were performed. The effects of mutations on unfolding-refolding kinetics were significantly different among the mutant proteins. The deletion/substitutions in turns located in the alpha-domain of human lysozyme affected the refolding rate, indicating the contribution of turn structures to the folding of a globular protein.
==Disease==
Known diseases associated with this structure: Amyloidosis, renal OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=153450 153450]], Microphthalmia, syndromic 1 OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=309800 309800]]


==About this Structure==
==About this Structure==
Line 29: Line 29:
[[Category: Yamagata, Y.]]
[[Category: Yamagata, Y.]]
[[Category: Yutani, K.]]
[[Category: Yutani, K.]]
[[Category: NA]]
[[Category: hydrolase]]
[[Category: hydrolase]]
[[Category: mutant]]
[[Category: mutant]]
Line 35: Line 34:
[[Category: turn]]
[[Category: turn]]


''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Mar 20 10:38:46 2008''
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun Mar 30 19:41:57 2008''

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA