1dca: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
|PDB= 1dca |SIZE=350|CAPTION= <scene name='initialview01'>1dca</scene>, resolution 2.2Å | |PDB= 1dca |SIZE=350|CAPTION= <scene name='initialview01'>1dca</scene>, resolution 2.2Å | ||
|SITE= | |SITE= | ||
|LIGAND= <scene name='pdbligand=ZN:ZINC ION'>ZN</scene> | |LIGAND= <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene> | ||
|ACTIVITY= [http://en.wikipedia.org/wiki/Carbonate_dehydratase Carbonate dehydratase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=4.2.1.1 4.2.1.1] | |ACTIVITY= <span class='plainlinks'>[http://en.wikipedia.org/wiki/Carbonate_dehydratase Carbonate dehydratase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=4.2.1.1 4.2.1.1] </span> | ||
|GENE= | |GENE= | ||
|DOMAIN= | |||
|RELATEDENTRY= | |||
|RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1dca FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1dca OCA], [http://www.ebi.ac.uk/pdbsum/1dca PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=1dca RCSB]</span> | |||
}} | }} | ||
Line 14: | Line 17: | ||
==Overview== | ==Overview== | ||
X-ray crystallographic analysis of the Thr-199-->Cys (T199C) variant of human carbonic anhydrase II reveals the first high-resolution structure of an engineered zinc coordination polyhedron in a metalloenzyme. In the wild-type enzyme, Thr-199 accepts a hydrogen bond from zinc-bound hydroxide; in the variant, the polypeptide backbone is sufficiently plastic to permit Cys-199 to displace hydroxide ion and coordinate to zinc with nearly perfect coordination stereochemistry. Importantly, the resulting His3-Cys-Zn2+ motif binds zinc more tightly than the wild-type enzyme [Kiefer, L. L., Krebs, J. F., Paterno, S. A., & Fierke C. A. (1993) Biochemistry (preceding paper in this issue)]. This novel zinc coordination polyhedron is analogous to that postulated for matrix metalloproteinase zymogens such as prostromelysin, where a cysteine-zinc interaction is responsible for the inactivity of the zymogen. Intriguingly, Cys-199 of T199C CAII is displaced from zinc coordination by soaking crystals in high concentrations of acetazolamide. Hence, residual catalytic activity measured for this variant probably arises from an alternate conformer of Cys-199 which allows the catalytic nucleophile, hydroxide ion, to be activated by zinc coordination. | X-ray crystallographic analysis of the Thr-199-->Cys (T199C) variant of human carbonic anhydrase II reveals the first high-resolution structure of an engineered zinc coordination polyhedron in a metalloenzyme. In the wild-type enzyme, Thr-199 accepts a hydrogen bond from zinc-bound hydroxide; in the variant, the polypeptide backbone is sufficiently plastic to permit Cys-199 to displace hydroxide ion and coordinate to zinc with nearly perfect coordination stereochemistry. Importantly, the resulting His3-Cys-Zn2+ motif binds zinc more tightly than the wild-type enzyme [Kiefer, L. L., Krebs, J. F., Paterno, S. A., & Fierke C. A. (1993) Biochemistry (preceding paper in this issue)]. This novel zinc coordination polyhedron is analogous to that postulated for matrix metalloproteinase zymogens such as prostromelysin, where a cysteine-zinc interaction is responsible for the inactivity of the zymogen. Intriguingly, Cys-199 of T199C CAII is displaced from zinc coordination by soaking crystals in high concentrations of acetazolamide. Hence, residual catalytic activity measured for this variant probably arises from an alternate conformer of Cys-199 which allows the catalytic nucleophile, hydroxide ion, to be activated by zinc coordination. | ||
==About this Structure== | ==About this Structure== | ||
Line 28: | Line 28: | ||
[[Category: Christianson, D W.]] | [[Category: Christianson, D W.]] | ||
[[Category: Ippolito, J A.]] | [[Category: Ippolito, J A.]] | ||
[[Category: lyase(oxo-acid)]] | [[Category: lyase(oxo-acid)]] | ||
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun Mar 30 19:38:50 2008'' |
Revision as of 19:38, 30 March 2008
| |||||||
, resolution 2.2Å | |||||||
---|---|---|---|---|---|---|---|
Ligands: | |||||||
Activity: | Carbonate dehydratase, with EC number 4.2.1.1 | ||||||
Resources: | FirstGlance, OCA, PDBsum, RCSB | ||||||
Coordinates: | save as pdb, mmCIF, xml |
STRUCTURE OF AN ENGINEERED METAL BINDING SITE IN HUMAN CARBONIC ANHYDRASE II REVEALS THE ARCHITECTURE OF A REGULATORY CYSTEINE SWITCH
OverviewOverview
X-ray crystallographic analysis of the Thr-199-->Cys (T199C) variant of human carbonic anhydrase II reveals the first high-resolution structure of an engineered zinc coordination polyhedron in a metalloenzyme. In the wild-type enzyme, Thr-199 accepts a hydrogen bond from zinc-bound hydroxide; in the variant, the polypeptide backbone is sufficiently plastic to permit Cys-199 to displace hydroxide ion and coordinate to zinc with nearly perfect coordination stereochemistry. Importantly, the resulting His3-Cys-Zn2+ motif binds zinc more tightly than the wild-type enzyme [Kiefer, L. L., Krebs, J. F., Paterno, S. A., & Fierke C. A. (1993) Biochemistry (preceding paper in this issue)]. This novel zinc coordination polyhedron is analogous to that postulated for matrix metalloproteinase zymogens such as prostromelysin, where a cysteine-zinc interaction is responsible for the inactivity of the zymogen. Intriguingly, Cys-199 of T199C CAII is displaced from zinc coordination by soaking crystals in high concentrations of acetazolamide. Hence, residual catalytic activity measured for this variant probably arises from an alternate conformer of Cys-199 which allows the catalytic nucleophile, hydroxide ion, to be activated by zinc coordination.
About this StructureAbout this Structure
1DCA is a Single protein structure of sequence from Homo sapiens. Full crystallographic information is available from OCA.
ReferenceReference
Structure of an engineered His3Cys zinc binding site in human carbonic anhydrase II., Ippolito JA, Christianson DW, Biochemistry. 1993 Sep 28;32(38):9901-5. PMID:8399159
Page seeded by OCA on Sun Mar 30 19:38:50 2008