2cvs: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 17: Line 17:
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
   </jmolCheckbox>
   </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2cvs ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">

Revision as of 21:50, 7 February 2016

Structures of Yeast Ribonucleotide Reductase IStructures of Yeast Ribonucleotide Reductase I

Structural highlights

2cvs is a 1 chain structure with sequence from Atcc 18824. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Activity:Ribonucleoside-diphosphate reductase, with EC number 1.17.4.1
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum

Function

[RIR1_YEAST] Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides.[1]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Ribonucleotide reductase catalyzes a crucial step in de novo DNA synthesis and is allosterically controlled by relative levels of dNTPs to maintain a balanced pool of deoxynucleoside triphosphates in the cell. In eukaryotes, the enzyme comprises a heterooligomer of alpha(2) and beta(2) subunits. The alpha subunit, Rnr1, contains catalytic and regulatory sites. Here, we report the only x-ray structures of the eukaryotic alpha subunit of ribonucleotide reductase from Saccharomyces cerevisiae. The structures of the apo-, AMPPNP only-, AMPPNP-CDP-, AMPPNP-UDP-, dGTP-ADP- and TTP-GDP-bound complexes give insight into substrate and effector binding and specificity cross-talk. These are Class I structures with the only fully ordered catalytic sites, including loop 2, a stretch of polypeptide that spans specificity and catalytic sites, conferring specificity. Binding of specificity effector rearranges loop 2; in our structures, this rearrangement moves P294, a residue unique to eukaryotes, out of the catalytic site, accommodating substrate binding. Substrate binding further rearranges loop 2. Cross-talk, by which effector binding regulates substrate preference, occurs largely through R293 and Q288 of loop 2, which are analogous to residues in Thermotoga maritima that mediate cross-talk. However loop-2 conformations and residue-substrate interactions differ substantially between yeast and T. maritima. In most effector-substrate complexes, water molecules help mediate substrate-loop 2 interactions. Finally, the substrate ribose binds with its 3' hydroxyl closer than its 2' hydroxyl to C218 of the catalytic redox pair. We also see a conserved water molecule at the catalytic site in all our structures, near the ribose 2' hydroxyl.

Structures of eukaryotic ribonucleotide reductase I provide insights into dNTP regulation.,Xu H, Faber C, Uchiki T, Fairman JW, Racca J, Dealwis C Proc Natl Acad Sci U S A. 2006 Mar 14;103(11):4022-7. Epub 2006 Mar 6. PMID:16537479[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Domkin V, Thelander L, Chabes A. Yeast DNA damage-inducible Rnr3 has a very low catalytic activity strongly stimulated after the formation of a cross-talking Rnr1/Rnr3 complex. J Biol Chem. 2002 May 24;277(21):18574-8. Epub 2002 Mar 13. PMID:11893751 doi:http://dx.doi.org/10.1074/jbc.M201553200
  2. Xu H, Faber C, Uchiki T, Fairman JW, Racca J, Dealwis C. Structures of eukaryotic ribonucleotide reductase I provide insights into dNTP regulation. Proc Natl Acad Sci U S A. 2006 Mar 14;103(11):4022-7. Epub 2006 Mar 6. PMID:16537479

2cvs, resolution 2.60Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA