2v1m: Difference between revisions
No edit summary |
No edit summary |
||
Line 6: | Line 6: | ||
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=OCS:CYSTEINESULFONIC+ACID'>OCS</scene></td></tr> | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=OCS:CYSTEINESULFONIC+ACID'>OCS</scene></td></tr> | ||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Glutathione_peroxidase Glutathione peroxidase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.11.1.9 1.11.1.9] </span></td></tr> | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Glutathione_peroxidase Glutathione peroxidase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.11.1.9 1.11.1.9] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2v1m FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2v1m OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2v1m RCSB], [http://www.ebi.ac.uk/pdbsum/2v1m PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2v1m FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2v1m OCA], [http://pdbe.org/2v1m PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2v1m RCSB], [http://www.ebi.ac.uk/pdbsum/2v1m PDBsum]</span></td></tr> | ||
</table> | </table> | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
Line 16: | Line 16: | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2v1m ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
Line 26: | Line 26: | ||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
</div> | </div> | ||
<div class="pdbe-citations 2v1m" style="background-color:#fffaf0;"></div> | |||
==See Also== | ==See Also== |
Revision as of 20:21, 7 February 2016
Crystal structure of Schistosoma mansoni glutathione peroxidaseCrystal structure of Schistosoma mansoni glutathione peroxidase
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedOxidative stress is a widespread challenge for living organisms, and especially so for parasitic ones, given the fact that their hosts can produce reactive oxygen species (ROS) as a mechanism of defense. Thus, long lived parasites, such as the flatworm Schistosomes, have evolved refined enzymatic systems capable of detoxifying ROS. Among these, glutathione peroxidases (Gpx) are a family of sulfur or selenium-dependent isozymes sharing the ability to reduce peroxides using the reducing equivalents provided by glutathione or possibly small proteins such as thioredoxin. As for other frontline antioxidant enzymatic systems, Gpxs are localized in the tegument of the Schistosomes, the outermost defense layer. In this article, we present the first crystal structure at 1.0 and 1.7 A resolution of two recombinant SmGpxs, carrying the active site mutations Sec43Cys and Sec43Ser, respectively. The structures confirm that this enzyme belongs to the monomeric class 4 (phospholipid hydroperoxide) Gpx. In the case of the Sec to Cys mutant, the catalytic Cys residue is oxidized to sulfonic acid. By combining static crystallography with molecular dynamics simulations, we obtained insight into the substrate binding sites and the conformational changes relevant to catalysis, proposing a role for the unusual reactivity of the catalytic residue. Proteins 2009. (c) 2009 Wiley-Liss, Inc. Combining crystallography and molecular dynamics: The case of Schistosoma mansoni phospholipid glutathione peroxidase.,Dimastrogiovanni D, Anselmi M, Miele AE, Boumis G, Petersson L, Angelucci F, Nola AD, Brunori M, Bellelli A Proteins. 2009 Jul 20. PMID:19714775[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|