2iyn: Difference between revisions
No edit summary |
No edit summary |
||
Line 17: | Line 17: | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2iyn ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> |
Revision as of 12:02, 7 February 2016
THE CO-FACTOR-INDUCED PRE-ACTIVE CONFORMATION IN PHOBTHE CO-FACTOR-INDUCED PRE-ACTIVE CONFORMATION IN PHOB
Structural highlights
Function[PHOB_ECOLI] This protein is a positive regulator for the phosphate regulon. Transcription of this operon is positively regulated by PhoB and PhoR when phosphate is limited. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedPhoB is an Escherichia coli transcription factor from a two-component signal transduction system that is sensitive to limiting environmental phosphate conditions. It consists of an N-terminal receiver domain (RD) and a C-terminal DNA-binding domain. The protein is activated upon phosphorylation at the RD, an event that depends on Mg(2+) binding. The structure of PhoB RD in complex with Mg(2+) is presented, which shows three protomers in the asymmetric unit that interact across two different surfaces. One association is symmetric and has been described as a non-active dimerization contact; the other involves the alpha4-beta5-alpha5 interface and recalls the contact found in activated PhoB. However, here this last interaction is not perfectly symmetric and helix alpha4, which in the activated molecule undergoes a helical shift, becomes strongly destabilized in one of the interacting monomers. All protomers bind the cation in a similar manner but, interestingly, at the prospective binding site for the phosphate moiety the side chains of either Glu88 (in helix alpha4) or Trp54 alternate and interact with active-site atoms. When Glu88 is inside the cavity, helix alpha4 is arranged similarly to the unliganded wild-type structure. However, if Trp54 is present, the helix loses its contacts with the active-site cavity and vanishes. Accordingly, the presence of Trp54 in the active site induces a flexible state in helix alpha4, potentially allowing a helical shift that phosphorylation would eventually stabilize. The cofactor-induced pre-active conformation in PhoB.,Sola M, Drew DL, Blanco AG, Gomis-Ruth FX, Coll M Acta Crystallogr D Biol Crystallogr. 2006 Sep;62(Pt 9):1046-57. Epub 2006, Aug 19. PMID:16929106[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|