1fma: Difference between revisions
No edit summary |
No edit summary |
||
Line 17: | Line 17: | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1fma ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> |
Revision as of 10:59, 7 February 2016
MOLYBDOPTERIN SYNTHASE (MOAD/MOAE)MOLYBDOPTERIN SYNTHASE (MOAD/MOAE)
Structural highlights
Function[MOAD_ECOLI] Involved in sulfur transfer in the conversion of molybdopterin precursor Z to molybdopterin.[1] [MOAE_ECOLI] Converts molybdopterin precursor Z to molybdopterin. This requires the incorporation of two sulfur atoms into precursor Z to generate a dithiolene group. The sulfur is provided by MoaD. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedMolybdenum cofactor (Moco) biosynthesis is an evolutionarily conserved pathway present in eubacteria, archaea and eukaryotes, including humans. Genetic deficiencies of enzymes involved in Moco biosynthesis in humans lead to a severe and usually fatal disease. Moco contains a tricyclic pyranopterin, termed molybdopterin (MPT), that bears the cis-dithiolene group responsible for molybdenum ligation. The dithiolene group of MPT is generated by MPT synthase, which consists of a large and small subunits. The 1.45 A resolution crystal structure of MPT synthase reveals a heterotetrameric protein in which the C-terminus of each small subunit is inserted into a large subunit to form the active site. In the activated form of the enzyme this C-terminus is present as a thiocarboxylate. In the structure of a covalent complex of MPT synthase, an isopeptide bond is present between the C-terminus of the small subunit and a Lys side chain in the large subunit. The strong structural similarity between the small subunit of MPT synthase and ubiquitin provides evidence for the evolutionary antecedence of the Moco biosynthetic pathway to the ubiquitin dependent protein degradation pathway. Crystal structure of molybdopterin synthase and its evolutionary relationship to ubiquitin activation.,Rudolph MJ, Wuebbens MM, Rajagopalan KV, Schindelin H Nat Struct Biol. 2001 Jan;8(1):42-6. PMID:11135669[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|