5gaf: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
'''Unreleased structure'''
==RNC in complex with SRP==
<StructureSection load='5gaf' size='340' side='right' caption='[[5gaf]], [[Resolution|resolution]] 4.30&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[5gaf]] is a 36 chain structure with sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5GAF OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5GAF FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GNP:PHOSPHOAMINOPHOSPHONIC+ACID-GUANYLATE+ESTER'>GNP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=UNK:UNKNOWN'>UNK</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5gaf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5gaf OCA], [http://pdbe.org/5gaf PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5gaf RCSB], [http://www.ebi.ac.uk/pdbsum/5gaf PDBsum]</span></td></tr>
</table>
{{Large structure}}
== Function ==
[[http://www.uniprot.org/uniprot/RL21_ECOLI RL21_ECOLI]] This protein binds to 23S rRNA in the presence of protein L20.[HAMAP-Rule:MF_01363] [[http://www.uniprot.org/uniprot/RL4_ECOLI RL4_ECOLI]] One of the primary rRNA binding proteins, this protein initially binds near the 5'-end of the 23S rRNA. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome.<ref>PMID:2442760</ref>  Protein L4 is a both a transcriptional repressor and a translational repressor protein; these two functions are independent of each other. It regulates transcription of the S10 operon (to which L4 belongs) by causing premature termination of transcription within the S10 leader; termination absolutely requires the NusA protein. L4 controls the translation of the S10 operon by binding to its mRNA. The regions of L4 that control regulation (residues 131-210) are different from those required for ribosome assembly (residues 89-103).<ref>PMID:2442760</ref>  Forms part of the polypeptide exit tunnel.<ref>PMID:2442760</ref>  Can regulate expression from Citrobacter freundii, Haemophilus influenzae, Morganella morganii, Salmonella typhimurium, Serratia marcescens, Vibrio cholerae and Yersinia enterocolitica (but not Pseudomonas aeruginosa) S10 leaders in vitro.<ref>PMID:2442760</ref>  [[http://www.uniprot.org/uniprot/RL17_ECOLI RL17_ECOLI]] Requires L15 for assembly into the 50S subunit.[HAMAP-Rule:MF_01368] [[http://www.uniprot.org/uniprot/RL18_ECOLI RL18_ECOLI]] This is one of the proteins that mediates the attachment of the 5S rRNA subcomplex onto the large ribosomal subunit where it forms part of the central protuberance. Binds stably to 5S rRNA; increases binding abilities of L5 in a cooperative fashion; both proteins together confer 23S rRNA binding. The 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs.<ref>PMID:353728</ref>  [[http://www.uniprot.org/uniprot/RL16_ECOLI RL16_ECOLI]] This protein binds directly to 23S ribosomal RNA and is located at the A site of the peptidyltransferase center. It contacts the A and P site tRNAs. It has an essential role in subunit assembly, which is not well understood.[HAMAP-Rule:MF_01342] [[http://www.uniprot.org/uniprot/RL25_ECOLI RL25_ECOLI]] This is one of the proteins that binds to the 5S RNA in the ribosome where it forms part of the central protuberance. Binds to the 5S rRNA independently of L5 and L18. Not required for binding of the 5S rRNA/L5/L18 subcomplex to 23S rRNA.[HAMAP-Rule:MF_01336] [[http://www.uniprot.org/uniprot/RL29_ECOLI RL29_ECOLI]] Binds 23S rRNA. It is not essential for growth.[HAMAP-Rule:MF_00374]  One of the proteins that surrounds the polypeptide exit tunnel on the outside of the subunit. Contacts trigger factor (PubMed:12226666).[HAMAP-Rule:MF_00374] [[http://www.uniprot.org/uniprot/RL14_ECOLI RL14_ECOLI]] This protein binds directly to 23S ribosomal RNA. In the E.coli 70S ribosome (PubMed:12809609) it has been modeled to make two contacts with the 16S rRNA of the 30S subunit, forming part of bridges B5 and B8, connecting the 2 subunits. Although the protein undergoes significant rotation during the transition from an initiation to and EF-G bound state, the bridges remain stable. In the 3.5 A resolved structures (PubMed:16272117) L14 and L19 interact and together make contact with the 16S rRNA in bridges B5 and B8.<ref>PMID:22829778</ref>  Can also interact with RsfA, in this case bridge B8 probably cannot form, and the 30S and 50S ribosomal subunits do not associate, which represses translation.<ref>PMID:22829778</ref>  [[http://www.uniprot.org/uniprot/RL20_ECOLI RL20_ECOLI]] One of the primary rRNA binding proteins, it binds close to the 5'-end of the 23S rRNA. It is important during the early stages of 50S assembly.[HAMAP-Rule:MF_00382] [[http://www.uniprot.org/uniprot/RL24_ECOLI RL24_ECOLI]] One of two assembly initiator proteins, it binds directly to the 5'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit. It is not thought to be involved in the functions of the mature 50S subunit in vitro.<ref>PMID:357435</ref>  One of the proteins that surrounds the polypeptide exit tunnel on the outside of the subunit.<ref>PMID:357435</ref>  [[http://www.uniprot.org/uniprot/RL9_ECOLI RL9_ECOLI]] One of the primary rRNA binding proteins, it binds very close to the 3' end of the 23S rRNA.[HAMAP-Rule:MF_00503] [[http://www.uniprot.org/uniprot/RL10_ECOLI RL10_ECOLI]] Protein L10 is also a translational repressor protein. It controls the translation of the rplJL-rpoBC operon by binding to its mRNA.[HAMAP-Rule:MF_00362] [[http://www.uniprot.org/uniprot/RL22_ECOLI RL22_ECOLI]] This protein binds specifically to 23S rRNA; its binding is stimulated by other ribosomal proteins, e.g. L4, L17, and L20. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome.[HAMAP-Rule:MF_01331_B]  The globular domain of the protein is one of the proteins that surrounds the polypeptide exit tunnel on the outside of the subunit, while an extended beta-hairpin is found that penetrates into the center of the 70S ribosome where it lines the wall of the exit tunnel. Removal of most of this hairpin (residues 85-95) does not prevent its incorporation into 70S ribosomes. Two of the hairpin residues (91 and 93) seem to be involved in translation elongation arrest of the SecM protein, as their replacement by larger amino acids alleviates the arrest.[HAMAP-Rule:MF_01331_B] [[http://www.uniprot.org/uniprot/RL13_ECOLI RL13_ECOLI]] This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly.[HAMAP-Rule:MF_01366] [[http://www.uniprot.org/uniprot/RL23_ECOLI RL23_ECOLI]] One of the early assembly proteins, it binds 23S rRNA; is essential for growth. One of the proteins that surround the polypeptide exit tunnel on the outside of the subunit. Acts as the docking site for trigger factor (PubMed:12226666) for Ffh binding to the ribosome (SRP54, PubMed:12756233 and PubMed:12702815) and to nascent polypeptide chains (PubMed:12756233).[HAMAP-Rule:MF_01369] [[http://www.uniprot.org/uniprot/RL3_ECOLI RL3_ECOLI]] One of two assembly inititator proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit.[HAMAP-Rule:MF_01325_B] [[http://www.uniprot.org/uniprot/RL6_ECOLI RL6_ECOLI]] This protein binds directly to at least 2 domains of the 23S ribosomal RNA, thus is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center.[HAMAP-Rule:MF_01365]  Gentamicin-resistant mutations in this protein affect translation fidelity.[HAMAP-Rule:MF_01365] [[http://www.uniprot.org/uniprot/RL11_ECOLI RL11_ECOLI]] This protein binds directly to 23S ribosomal RNA. Forms the L11 stalk, which is mobile in the ribosome, indicating its contribution to the activity of initiation, elongation and release factors.[HAMAP-Rule:MF_00736_B] [[http://www.uniprot.org/uniprot/RL15_ECOLI RL15_ECOLI]] This protein binds the 5S rRNA. It is required for the late stages of subunit assembly, and is essential for 5S rRNA assembly onto the ribosome.[HAMAP-Rule:MF_01341_B] [[http://www.uniprot.org/uniprot/RL5_ECOLI RL5_ECOLI]] This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. Its 5S rRNA binding is significantly enhanced in the presence of L18.[HAMAP-Rule:MF_01333_B]  In the 70S ribosome in the initiation state (PubMed:12809609) was modeled to contact protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; the protein-protein contacts between S13 and L5 in B1b change in the model with bound EF-G implicating this bridge in subunit movement (PubMed:12809609 and PubMed:18723842). In the two 3.5 A resolved ribosome structures (PubMed:16272117) the contacts between L5, S13 and S19 are different, confirming the dynamic nature of this interaction.[HAMAP-Rule:MF_01333_B]  Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs.[HAMAP-Rule:MF_01333_B] [[http://www.uniprot.org/uniprot/RL19_ECOLI RL19_ECOLI]] This protein is located at the 30S-50S ribosomal subunit interface. In the 70S ribosome (PubMed:12809609) it has been modeled to make two contacts with the 16S rRNA of the 30S subunit forming part of bridges B6 and B8. In the 3.5 A resolved structures (PubMed:16272117) L14 and L19 interact and together make contact with the 16S rRNA. The protein conformation is quite different between the 50S and 70S structures, which may be necessary for translocation.[HAMAP-Rule:MF_00402] [[http://www.uniprot.org/uniprot/RL2_ECOLI RL2_ECOLI]] One of the primary rRNA binding proteins. Located near the base of the L1 stalk, it is probably also mobile. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is highly controversial.[HAMAP-Rule:MF_01320_B]  In the E.coli 70S ribosome in the initiation state it has been modeled to make several contacts with the 16S rRNA (forming bridge B7b, PubMed:12809609); these contacts are broken in the model with bound EF-G.[HAMAP-Rule:MF_01320_B]
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Co-translational protein targeting to membranes is a universally conserved process. Central steps include cargo recognition by the signal recognition particle and handover to the Sec translocon. Here we present snapshots of key co-translational-targeting complexes solved by cryo-electron microscopy at near-atomic resolution, establishing the molecular contacts between the Escherichia coli translating ribosome, the signal recognition particle and the translocon. Our results reveal the conformational changes that regulate the latching of the signal sequence, the release of the heterodimeric domains of the signal recognition particle and its receptor, and the handover of the signal sequence to the translocon. We also observe that the signal recognition particle and the translocon insert-specific structural elements into the ribosomal tunnel to remodel it, possibly to sense nascent chains. Our work provides structural evidence for a conformational state of the signal recognition particle and its receptor primed for translocon binding to the ribosome-nascent chain complex.


The entry 5gaf is ON HOLD
Structures of the E. coli translating ribosome with SRP and its receptor and with the translocon.,Jomaa A, Boehringer D, Leibundgut M, Ban N Nat Commun. 2016 Jan 25;7:10471. doi: 10.1038/ncomms10471. PMID:26804923<ref>PMID:26804923</ref>


Authors: Jomaa, A., Boehringer, D., Leibundgut, M., Ban, N.
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
</div>
Description: RNC in complex with SRP
<div class="pdbe-citations 5gaf" style="background-color:#fffaf0;"></div>
[[Category: Unreleased Structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Escherichia coli]]
[[Category: Ban, N]]
[[Category: Boehringer, D]]
[[Category: Jomaa, A]]
[[Category: Jomaa, A]]
[[Category: Boehringer, D]]
[[Category: Leibundgut, M]]
[[Category: Leibundgut, M]]
[[Category: Ban, N]]
[[Category: Ribosome]]
[[Category: Sr]]
[[Category: Srp]]

Revision as of 18:46, 3 February 2016

RNC in complex with SRPRNC in complex with SRP

Structural highlights

5gaf is a 36 chain structure with sequence from Escherichia coli. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, ,
NonStd Res:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum
Warning: this is a large structure, and loading might take a long time or not happen at all.

Function

[RL21_ECOLI] This protein binds to 23S rRNA in the presence of protein L20.[HAMAP-Rule:MF_01363] [RL4_ECOLI] One of the primary rRNA binding proteins, this protein initially binds near the 5'-end of the 23S rRNA. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome.[1] Protein L4 is a both a transcriptional repressor and a translational repressor protein; these two functions are independent of each other. It regulates transcription of the S10 operon (to which L4 belongs) by causing premature termination of transcription within the S10 leader; termination absolutely requires the NusA protein. L4 controls the translation of the S10 operon by binding to its mRNA. The regions of L4 that control regulation (residues 131-210) are different from those required for ribosome assembly (residues 89-103).[2] Forms part of the polypeptide exit tunnel.[3] Can regulate expression from Citrobacter freundii, Haemophilus influenzae, Morganella morganii, Salmonella typhimurium, Serratia marcescens, Vibrio cholerae and Yersinia enterocolitica (but not Pseudomonas aeruginosa) S10 leaders in vitro.[4] [RL17_ECOLI] Requires L15 for assembly into the 50S subunit.[HAMAP-Rule:MF_01368] [RL18_ECOLI] This is one of the proteins that mediates the attachment of the 5S rRNA subcomplex onto the large ribosomal subunit where it forms part of the central protuberance. Binds stably to 5S rRNA; increases binding abilities of L5 in a cooperative fashion; both proteins together confer 23S rRNA binding. The 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs.[5] [RL16_ECOLI] This protein binds directly to 23S ribosomal RNA and is located at the A site of the peptidyltransferase center. It contacts the A and P site tRNAs. It has an essential role in subunit assembly, which is not well understood.[HAMAP-Rule:MF_01342] [RL25_ECOLI] This is one of the proteins that binds to the 5S RNA in the ribosome where it forms part of the central protuberance. Binds to the 5S rRNA independently of L5 and L18. Not required for binding of the 5S rRNA/L5/L18 subcomplex to 23S rRNA.[HAMAP-Rule:MF_01336] [RL29_ECOLI] Binds 23S rRNA. It is not essential for growth.[HAMAP-Rule:MF_00374] One of the proteins that surrounds the polypeptide exit tunnel on the outside of the subunit. Contacts trigger factor (PubMed:12226666).[HAMAP-Rule:MF_00374] [RL14_ECOLI] This protein binds directly to 23S ribosomal RNA. In the E.coli 70S ribosome (PubMed:12809609) it has been modeled to make two contacts with the 16S rRNA of the 30S subunit, forming part of bridges B5 and B8, connecting the 2 subunits. Although the protein undergoes significant rotation during the transition from an initiation to and EF-G bound state, the bridges remain stable. In the 3.5 A resolved structures (PubMed:16272117) L14 and L19 interact and together make contact with the 16S rRNA in bridges B5 and B8.[6] Can also interact with RsfA, in this case bridge B8 probably cannot form, and the 30S and 50S ribosomal subunits do not associate, which represses translation.[7] [RL20_ECOLI] One of the primary rRNA binding proteins, it binds close to the 5'-end of the 23S rRNA. It is important during the early stages of 50S assembly.[HAMAP-Rule:MF_00382] [RL24_ECOLI] One of two assembly initiator proteins, it binds directly to the 5'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit. It is not thought to be involved in the functions of the mature 50S subunit in vitro.[8] One of the proteins that surrounds the polypeptide exit tunnel on the outside of the subunit.[9] [RL9_ECOLI] One of the primary rRNA binding proteins, it binds very close to the 3' end of the 23S rRNA.[HAMAP-Rule:MF_00503] [RL10_ECOLI] Protein L10 is also a translational repressor protein. It controls the translation of the rplJL-rpoBC operon by binding to its mRNA.[HAMAP-Rule:MF_00362] [RL22_ECOLI] This protein binds specifically to 23S rRNA; its binding is stimulated by other ribosomal proteins, e.g. L4, L17, and L20. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome.[HAMAP-Rule:MF_01331_B] The globular domain of the protein is one of the proteins that surrounds the polypeptide exit tunnel on the outside of the subunit, while an extended beta-hairpin is found that penetrates into the center of the 70S ribosome where it lines the wall of the exit tunnel. Removal of most of this hairpin (residues 85-95) does not prevent its incorporation into 70S ribosomes. Two of the hairpin residues (91 and 93) seem to be involved in translation elongation arrest of the SecM protein, as their replacement by larger amino acids alleviates the arrest.[HAMAP-Rule:MF_01331_B] [RL13_ECOLI] This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly.[HAMAP-Rule:MF_01366] [RL23_ECOLI] One of the early assembly proteins, it binds 23S rRNA; is essential for growth. One of the proteins that surround the polypeptide exit tunnel on the outside of the subunit. Acts as the docking site for trigger factor (PubMed:12226666) for Ffh binding to the ribosome (SRP54, PubMed:12756233 and PubMed:12702815) and to nascent polypeptide chains (PubMed:12756233).[HAMAP-Rule:MF_01369] [RL3_ECOLI] One of two assembly inititator proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit.[HAMAP-Rule:MF_01325_B] [RL6_ECOLI] This protein binds directly to at least 2 domains of the 23S ribosomal RNA, thus is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center.[HAMAP-Rule:MF_01365] Gentamicin-resistant mutations in this protein affect translation fidelity.[HAMAP-Rule:MF_01365] [RL11_ECOLI] This protein binds directly to 23S ribosomal RNA. Forms the L11 stalk, which is mobile in the ribosome, indicating its contribution to the activity of initiation, elongation and release factors.[HAMAP-Rule:MF_00736_B] [RL15_ECOLI] This protein binds the 5S rRNA. It is required for the late stages of subunit assembly, and is essential for 5S rRNA assembly onto the ribosome.[HAMAP-Rule:MF_01341_B] [RL5_ECOLI] This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. Its 5S rRNA binding is significantly enhanced in the presence of L18.[HAMAP-Rule:MF_01333_B] In the 70S ribosome in the initiation state (PubMed:12809609) was modeled to contact protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; the protein-protein contacts between S13 and L5 in B1b change in the model with bound EF-G implicating this bridge in subunit movement (PubMed:12809609 and PubMed:18723842). In the two 3.5 A resolved ribosome structures (PubMed:16272117) the contacts between L5, S13 and S19 are different, confirming the dynamic nature of this interaction.[HAMAP-Rule:MF_01333_B] Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs.[HAMAP-Rule:MF_01333_B] [RL19_ECOLI] This protein is located at the 30S-50S ribosomal subunit interface. In the 70S ribosome (PubMed:12809609) it has been modeled to make two contacts with the 16S rRNA of the 30S subunit forming part of bridges B6 and B8. In the 3.5 A resolved structures (PubMed:16272117) L14 and L19 interact and together make contact with the 16S rRNA. The protein conformation is quite different between the 50S and 70S structures, which may be necessary for translocation.[HAMAP-Rule:MF_00402] [RL2_ECOLI] One of the primary rRNA binding proteins. Located near the base of the L1 stalk, it is probably also mobile. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is highly controversial.[HAMAP-Rule:MF_01320_B] In the E.coli 70S ribosome in the initiation state it has been modeled to make several contacts with the 16S rRNA (forming bridge B7b, PubMed:12809609); these contacts are broken in the model with bound EF-G.[HAMAP-Rule:MF_01320_B]

Publication Abstract from PubMed

Co-translational protein targeting to membranes is a universally conserved process. Central steps include cargo recognition by the signal recognition particle and handover to the Sec translocon. Here we present snapshots of key co-translational-targeting complexes solved by cryo-electron microscopy at near-atomic resolution, establishing the molecular contacts between the Escherichia coli translating ribosome, the signal recognition particle and the translocon. Our results reveal the conformational changes that regulate the latching of the signal sequence, the release of the heterodimeric domains of the signal recognition particle and its receptor, and the handover of the signal sequence to the translocon. We also observe that the signal recognition particle and the translocon insert-specific structural elements into the ribosomal tunnel to remodel it, possibly to sense nascent chains. Our work provides structural evidence for a conformational state of the signal recognition particle and its receptor primed for translocon binding to the ribosome-nascent chain complex.

Structures of the E. coli translating ribosome with SRP and its receptor and with the translocon.,Jomaa A, Boehringer D, Leibundgut M, Ban N Nat Commun. 2016 Jan 25;7:10471. doi: 10.1038/ncomms10471. PMID:26804923[10]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Freedman LP, Zengel JM, Archer RH, Lindahl L. Autogenous control of the S10 ribosomal protein operon of Escherichia coli: genetic dissection of transcriptional and posttranscriptional regulation. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6516-20. PMID:2442760
  2. Freedman LP, Zengel JM, Archer RH, Lindahl L. Autogenous control of the S10 ribosomal protein operon of Escherichia coli: genetic dissection of transcriptional and posttranscriptional regulation. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6516-20. PMID:2442760
  3. Freedman LP, Zengel JM, Archer RH, Lindahl L. Autogenous control of the S10 ribosomal protein operon of Escherichia coli: genetic dissection of transcriptional and posttranscriptional regulation. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6516-20. PMID:2442760
  4. Freedman LP, Zengel JM, Archer RH, Lindahl L. Autogenous control of the S10 ribosomal protein operon of Escherichia coli: genetic dissection of transcriptional and posttranscriptional regulation. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6516-20. PMID:2442760
  5. Newberry V, Brosius J, Garrett R. Fragment of protein L18 from the Escherichia coli ribosome that contains the 5S RNA binding site. Nucleic Acids Res. 1978 Jun;5(6):1753-66. PMID:353728
  6. Hauser R, Pech M, Kijek J, Yamamoto H, Titz B, Naeve F, Tovchigrechko A, Yamamoto K, Szaflarski W, Takeuchi N, Stellberger T, Diefenbacher ME, Nierhaus KH, Uetz P. RsfA (YbeB) proteins are conserved ribosomal silencing factors. PLoS Genet. 2012;8(7):e1002815. doi: 10.1371/journal.pgen.1002815. Epub 2012 Jul , 19. PMID:22829778 doi:10.1371/journal.pgen.1002815
  7. Hauser R, Pech M, Kijek J, Yamamoto H, Titz B, Naeve F, Tovchigrechko A, Yamamoto K, Szaflarski W, Takeuchi N, Stellberger T, Diefenbacher ME, Nierhaus KH, Uetz P. RsfA (YbeB) proteins are conserved ribosomal silencing factors. PLoS Genet. 2012;8(7):e1002815. doi: 10.1371/journal.pgen.1002815. Epub 2012 Jul , 19. PMID:22829778 doi:10.1371/journal.pgen.1002815
  8. Spillmann S, Nierhaus KH. The ribosomal protein L24 of Escherichia coli is an assembly protein. J Biol Chem. 1978 Oct 10;253(19):7047-50. PMID:357435
  9. Spillmann S, Nierhaus KH. The ribosomal protein L24 of Escherichia coli is an assembly protein. J Biol Chem. 1978 Oct 10;253(19):7047-50. PMID:357435
  10. Jomaa A, Boehringer D, Leibundgut M, Ban N. Structures of the E. coli translating ribosome with SRP and its receptor and with the translocon. Nat Commun. 2016 Jan 25;7:10471. doi: 10.1038/ncomms10471. PMID:26804923 doi:http://dx.doi.org/10.1038/ncomms10471

5gaf, resolution 4.30Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA