4xmm: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
<table><tr><td colspan='2'>[[4xmm]] is a 8 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4XMM OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4XMM FirstGlance]. <br> | <table><tr><td colspan='2'>[[4xmm]] is a 8 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4XMM OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4XMM FirstGlance]. <br> | ||
</td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4xmn|4xmn]]</td></tr> | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4xmn|4xmn]]</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4xmm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4xmm OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4xmm RCSB], [http://www.ebi.ac.uk/pdbsum/4xmm PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4xmm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4xmm OCA], [http://pdbe.org/4xmm PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4xmm RCSB], [http://www.ebi.ac.uk/pdbsum/4xmm PDBsum]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
Line 16: | Line 16: | ||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
</div> | </div> | ||
<div class="pdbe-citations 4xmm" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Nucleoporin|Nucleoporin]] | |||
== References == | == References == | ||
<references/> | <references/> | ||
Line 29: | Line 33: | ||
[[Category: Immune system]] | [[Category: Immune system]] | ||
[[Category: Structural protein]] | [[Category: Structural protein]] | ||
[[Category: Transport protein-immune system complex]] |
Revision as of 10:53, 3 February 2016
Structure of the yeast coat nucleoporin complex, space group C2Structure of the yeast coat nucleoporin complex, space group C2
Structural highlights
Function[NUP84_YEAST] Functions as a component of the nuclear pore complex (NPC). NPC components, collectively referred to as nucleoporins (NUPs), can play the role of both NPC structural components and of docking or interaction partners for transiently associated nuclear transport factors. NUP84 is involved in nuclear poly(A)+ RNA export, in NPC assembly and distribution, as well as in nuclear envelope organization.[1] [2] [SEH1_YEAST] Functions as a component of the nuclear pore complex (NPC). NPC components, collectively referred to as nucleoporins (NUPs), can play the role of both NPC structural components and of docking or interaction partners for transiently associated nuclear transport factors. Involved in nuclear poly(A)+ RNA export and NPC biogenesis. It is also required for normal nuclear morphology. Component of the SEA complex which coats the vacuolar membrane and is involved in intracellular trafficking, autophagy, response to nitrogen starvation, and amino acid biogenesis.[3] [4] [5] [6] [NU145_YEAST] Functions as a component of the nuclear pore complex (NPC). NPC components, collectively referred to as nucleoporins (NUPs), can play the role of both NPC structural components and of docking or interaction partners for transiently associated nuclear transport factors. Active directional transport is assured by both, a Phe-Gly (FG) repeat affinity gradient for these transport factors across the NPC and a transport cofactor concentration gradient across the nuclear envelope (GSP1 and GSP2 GTPases associated predominantly with GTP in the nucleus, with GDP in the cytoplasm). NUP145 is autocatalytically cleaved in vivo in 2 polypeptides which assume different functions in the NPC. NUP145N as one of the FG repeat nucleoporins participates in karyopherin interactions and contains part of the autocatalytic cleavage activity. NUP145C as part of the NUP84 complex is involved in nuclear poly(A)+ RNA and tRNA export. It is also required for normal NPC distribution (probably through interactions with MLP1 and MLP2) and NPC assembly, as well as for normal nuclear envelope organization.[7] [8] [9] [10] [11] [12] [13] [14] [15] [SEC13_YEAST] Functions as a component of the nuclear pore complex (NPC) and the COPII coat. It is one of 5 proteins constituting the COPII coat, which is involved in anterograde (ER to Golgi) double-membrane transport vesicle formation. First the small GTPase SAR1, activated by and binding to the integral ER membrane protein SEC12, exchanges GDP for GTP and recruits the heterodimer SEC23/24, which in turn recruits the heterotetramer SEC13-SEC31. The polymerization of COPII coat complexes then causes physically the deformation (budding) of the membrane, leading to the creation of a transport vesicle. The COPII complex is dissociated upon SAR1-GTP hydrolysis to SAR1-GDP. SEC23 functions as the SAR1 GTPase activating protein, whose activity is stimulated in the presence of SEC13/31. SEC13 is directly or indirectly required for normal ER membrane and nuclear envelope morphology. It also functions as a component of the nuclear pore complex (NPC). NPC components, collectively referred to as nucleoporins (NUPs), can play the role of both NPC structural components and of docking or interaction partners for transiently associated nuclear transport factors. SEC13 is required for efficient mRNA export from the nucleus to the cytoplasm and for correct nuclear pore biogenesis and distribution. Component of the SEA complex which coats the vacuolar membrane and is involved in intracellular trafficking, autophagy, response to nitrogen starvation, and amino acid biogenesis.[16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [NUP85_YEAST] Functions as a component of the nuclear pore complex (NPC). NPC components, collectively referred to as nucleoporins (NUPs), can play the role of both NPC structural components and of docking or interaction partners for transiently associated nuclear transport factors. NUP85 is involved in nuclear poly(A)+ RNA and pre-ribosome export, in GSP1 nuclear import, in NPC assembly and distribution, as well as in nuclear envelope organization.[35] [36] [37] [38] [39] [40] [NU120_YEAST] Functions as a component of the nuclear pore complex (NPC). NPC components, collectively referred to as nucleoporins (NUPs), can play the role of both NPC structural components and of docking or interaction partners for transiently associated nuclear transport factors. NUP120 is involved in nuclear poly(A)+ RNA and pre-ribosome export, in GSP1 nuclear import, in NPC assembly and distribution, as well as in nuclear envelope organization.[41] [42] [43] [44] [45] Publication Abstract from PubMedThe nuclear pore complex (NPC) constitutes the sole gateway for bidirectional nucleocytoplasmic transport. Despite half a century of structural characterization, the architecture of the NPC remains unknown. Here we present the crystal structure of a reconstituted ~400-kilodalton coat nucleoporin complex (CNC) from Saccharomyces cerevisiae at a 7.4 angstrom resolution. The crystal structure revealed a curved Y-shaped architecture and the molecular details of the coat nucleoporin interactions forming the central "triskelion" of the Y. A structural comparison of the yeast CNC with an electron microscopy reconstruction of its human counterpart suggested the evolutionary conservation of the elucidated architecture. Moreover, 32 copies of the CNC crystal structure docked readily into a cryoelectron tomographic reconstruction of the fully assembled human NPC, thereby accounting for ~16 megadalton of its mass. Nuclear pores. Architecture of the nuclear pore complex coat.,Stuwe T, Correia AR, Lin DH, Paduch M, Lu VT, Kossiakoff AA, Hoelz A Science. 2015 Mar 6;347(6226):1148-52. doi: 10.1126/science.aaa4136. Epub 2015, Feb 12. PMID:25745173[46] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|