1by8: Difference between revisions

No edit summary
No edit summary
Line 5: Line 5:
|SITE=  
|SITE=  
|LIGAND=  
|LIGAND=  
|ACTIVITY= [http://en.wikipedia.org/wiki/Cathepsin_K Cathepsin K], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.4.22.38 3.4.22.38]  
|ACTIVITY= <span class='plainlinks'>[http://en.wikipedia.org/wiki/Cathepsin_K Cathepsin K], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.4.22.38 3.4.22.38] </span>
|GENE=  
|GENE=  
|DOMAIN=
|RELATEDENTRY=
|RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1by8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1by8 OCA], [http://www.ebi.ac.uk/pdbsum/1by8 PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=1by8 RCSB]</span>
}}
}}


Line 14: Line 17:
==Overview==
==Overview==
Cathepsin K is a cysteine protease present in human osteoclasts that plays an important role in bone resorption. Cathepsin K is synthesized as an inactive proenzyme and activated under conditions of low pH. Autoproteolytic processing of the N-terminal 99 amino acid propeptide produces the active, mature form of cathepsin K. It is presumed that the activation of procathepsin K in vivo occurs in the bone resorption pit, which has a low-pH environment. We have determined the structure of human procathepsin K at 2.8 A resolution. The structure of the mature enzyme domain within procathepsin K is virtually identical to that of mature cathepsin K. The fold of the propeptide of procathepsin K is similar to that observed in procathepsins B and L despite differences in length and sequence. A portion of the propeptide occupies the active site cleft of cathepsin K. Hydrophobic interactions, salt bridges, and hydrogen-bonding interactions are observed in the structure of the propeptide and between the propeptide and the mature enzyme of procathepsin K. These interactions suggest an explanation for the stability of the proenzyme. The structure of procathepsin K contributes to an understanding of the molecular basis of inhibition by the propeptide portion of the molecule and activation of this important member of the cysteine protease family.
Cathepsin K is a cysteine protease present in human osteoclasts that plays an important role in bone resorption. Cathepsin K is synthesized as an inactive proenzyme and activated under conditions of low pH. Autoproteolytic processing of the N-terminal 99 amino acid propeptide produces the active, mature form of cathepsin K. It is presumed that the activation of procathepsin K in vivo occurs in the bone resorption pit, which has a low-pH environment. We have determined the structure of human procathepsin K at 2.8 A resolution. The structure of the mature enzyme domain within procathepsin K is virtually identical to that of mature cathepsin K. The fold of the propeptide of procathepsin K is similar to that observed in procathepsins B and L despite differences in length and sequence. A portion of the propeptide occupies the active site cleft of cathepsin K. Hydrophobic interactions, salt bridges, and hydrogen-bonding interactions are observed in the structure of the propeptide and between the propeptide and the mature enzyme of procathepsin K. These interactions suggest an explanation for the stability of the proenzyme. The structure of procathepsin K contributes to an understanding of the molecular basis of inhibition by the propeptide portion of the molecule and activation of this important member of the cysteine protease family.
==Disease==
Known disease associated with this structure: Pycnodysostosis OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=601105 601105]]


==About this Structure==
==About this Structure==
Line 40: Line 40:
[[Category: papain]]
[[Category: papain]]


''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Mar 20 10:17:26 2008''
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun Mar 30 19:10:41 2008''

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA