5av9: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
'''Unreleased structure'''
==human nucleosome core particle==
<StructureSection load='5av9' size='340' side='right' caption='[[5av9]], [[Resolution|resolution]] 2.20&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[5av9]] is a 10 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5AV9 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5AV9 FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene></td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5av5|5av5]], [[5av6|5av6]], [[5av8|5av8]], [[5avb|5avb]], [[5avc|5avc]]</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5av9 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5av9 OCA], [http://pdbe.org/5av9 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5av9 RCSB], [http://www.ebi.ac.uk/pdbsum/5av9 PDBsum]</span></td></tr>
</table>
== Function ==
[[http://www.uniprot.org/uniprot/H2B1J_HUMAN H2B1J_HUMAN]] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.<ref>PMID:11859126</ref> <ref>PMID:12860195</ref> <ref>PMID:15019208</ref>  Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.<ref>PMID:11859126</ref> <ref>PMID:12860195</ref> <ref>PMID:15019208</ref> 
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Post-translational modifications (PTMs) of histones, such as lysine acetylation of the N-terminal tails, play crucial roles in controlling gene expression. Due to the difficulty in reconstituting site-specifically acetylated nucleosomes with crystallization quality, structural analyses of histone acetylation are currently performed using synthesized tail peptides. Through engineering of the genetic code, translation termination, and cell-free protein synthesis, we reconstituted human H4-mono- to tetra-acetylated nucleosome core particles (NCPs), and solved the crystal structures of the H4-K5/K8/K12/K16-tetra-acetylated NCP and unmodified NCP at 2.4 A and 2.2 A resolutions, respectively. The structure of the H4-tetra-acetylated NCP resembled that of the unmodified NCP, and the DNA wrapped the histone octamer as precisely as in the unmodified NCP. However, the B-factors were significantly increased for the peripheral DNAs near the N-terminal tail of the intra- or inter-nucleosomal H4. In contrast, the B-factors were negligibly affected by the H4 tetra-acetylation in histone core residues, including those composing the acidic patch, and at H4-R23, which interacts with the acidic patch of the neighboring NCP. The present study revealed that the H4 tetra-acetylation impairs NCP self-association by changing the interactions of the H4 tail with DNA, and is the first demonstration of crystallization quality NCPs reconstituted with genuine PTMs.


The entry 5av9 is ON HOLD  until Paper Publication
Intra- and inter-nucleosomal interactions of the histone H4 tail revealed with a human nucleosome core particle with genetically-incorporated H4 tetra-acetylation.,Wakamori M, Fujii Y, Suka N, Shirouzu M, Sakamoto K, Umehara T, Yokoyama S Sci Rep. 2015 Nov 26;5:17204. doi: 10.1038/srep17204. PMID:26607036<ref>PMID:26607036</ref>


Authors: Wakamori, M., Fujii, Y., Umehara, T., Yokoyama, S.
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
</div>
Description: human nucleosome core particle
<div class="pdbe-citations 5av9" style="background-color:#fffaf0;"></div>
[[Category: Unreleased Structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Fujii, Y]]
[[Category: Fujii, Y]]
[[Category: Umehara, T]]
[[Category: Wakamori, M]]
[[Category: Wakamori, M]]
[[Category: Umehara, T]]
[[Category: Yokoyama, S]]
[[Category: Yokoyama, S]]
[[Category: Acetylation]]
[[Category: Dna binding protein-dna complex]]
[[Category: Ncp]]
[[Category: Nucleosome core particle]]

Revision as of 15:39, 23 December 2015

human nucleosome core particlehuman nucleosome core particle

Structural highlights

5av9 is a 10 chain structure. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum

Function

[H2B1J_HUMAN] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.[1] [2] [3] Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.[4] [5] [6]

Publication Abstract from PubMed

Post-translational modifications (PTMs) of histones, such as lysine acetylation of the N-terminal tails, play crucial roles in controlling gene expression. Due to the difficulty in reconstituting site-specifically acetylated nucleosomes with crystallization quality, structural analyses of histone acetylation are currently performed using synthesized tail peptides. Through engineering of the genetic code, translation termination, and cell-free protein synthesis, we reconstituted human H4-mono- to tetra-acetylated nucleosome core particles (NCPs), and solved the crystal structures of the H4-K5/K8/K12/K16-tetra-acetylated NCP and unmodified NCP at 2.4 A and 2.2 A resolutions, respectively. The structure of the H4-tetra-acetylated NCP resembled that of the unmodified NCP, and the DNA wrapped the histone octamer as precisely as in the unmodified NCP. However, the B-factors were significantly increased for the peripheral DNAs near the N-terminal tail of the intra- or inter-nucleosomal H4. In contrast, the B-factors were negligibly affected by the H4 tetra-acetylation in histone core residues, including those composing the acidic patch, and at H4-R23, which interacts with the acidic patch of the neighboring NCP. The present study revealed that the H4 tetra-acetylation impairs NCP self-association by changing the interactions of the H4 tail with DNA, and is the first demonstration of crystallization quality NCPs reconstituted with genuine PTMs.

Intra- and inter-nucleosomal interactions of the histone H4 tail revealed with a human nucleosome core particle with genetically-incorporated H4 tetra-acetylation.,Wakamori M, Fujii Y, Suka N, Shirouzu M, Sakamoto K, Umehara T, Yokoyama S Sci Rep. 2015 Nov 26;5:17204. doi: 10.1038/srep17204. PMID:26607036[7]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Kim HS, Cho JH, Park HW, Yoon H, Kim MS, Kim SC. Endotoxin-neutralizing antimicrobial proteins of the human placenta. J Immunol. 2002 Mar 1;168(5):2356-64. PMID:11859126
  2. Tollin M, Bergman P, Svenberg T, Jornvall H, Gudmundsson GH, Agerberth B. Antimicrobial peptides in the first line defence of human colon mucosa. Peptides. 2003 Apr;24(4):523-30. PMID:12860195
  3. Howell SJ, Wilk D, Yadav SP, Bevins CL. Antimicrobial polypeptides of the human colonic epithelium. Peptides. 2003 Nov;24(11):1763-70. PMID:15019208 doi:10.1016/j.peptides.2003.07.028
  4. Kim HS, Cho JH, Park HW, Yoon H, Kim MS, Kim SC. Endotoxin-neutralizing antimicrobial proteins of the human placenta. J Immunol. 2002 Mar 1;168(5):2356-64. PMID:11859126
  5. Tollin M, Bergman P, Svenberg T, Jornvall H, Gudmundsson GH, Agerberth B. Antimicrobial peptides in the first line defence of human colon mucosa. Peptides. 2003 Apr;24(4):523-30. PMID:12860195
  6. Howell SJ, Wilk D, Yadav SP, Bevins CL. Antimicrobial polypeptides of the human colonic epithelium. Peptides. 2003 Nov;24(11):1763-70. PMID:15019208 doi:10.1016/j.peptides.2003.07.028
  7. Wakamori M, Fujii Y, Suka N, Shirouzu M, Sakamoto K, Umehara T, Yokoyama S. Intra- and inter-nucleosomal interactions of the histone H4 tail revealed with a human nucleosome core particle with genetically-incorporated H4 tetra-acetylation. Sci Rep. 2015 Nov 26;5:17204. doi: 10.1038/srep17204. PMID:26607036 doi:http://dx.doi.org/10.1038/srep17204

5av9, resolution 2.20Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA