4d82: Difference between revisions
No edit summary |
No edit summary |
||
Line 8: | Line 8: | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4d82 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4d82 OCA], [http://pdbe.org/4d82 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4d82 RCSB], [http://www.ebi.ac.uk/pdbsum/4d82 PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4d82 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4d82 OCA], [http://pdbe.org/4d82 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4d82 RCSB], [http://www.ebi.ac.uk/pdbsum/4d82 PDBsum]</span></td></tr> | ||
</table> | </table> | ||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The vacuolar protein sorting 4 AAA-ATPase (Vps4) recycles endosomal sorting complexes required for transport (ESCRT-III) polymers from cellular membranes. Here we present a 3.6-A X-ray structure of ring-shaped Vps4 from Metallosphera sedula (MsVps4), seen as an asymmetric pseudohexamer. Conserved key interface residues are shown to be important for MsVps4 assembly, ATPase activity in vitro, ESCRT-III disassembly in vitro and HIV-1 budding. ADP binding leads to conformational changes within the protomer, which might propagate within the ring structure. All ATP-binding sites are accessible and the pseudohexamer binds six ATP with micromolar affinity in vitro. In contrast, ADP occupies one high-affinity and five low-affinity binding sites in vitro, consistent with conformational asymmetry induced on ATP hydrolysis. The structure represents a snapshot of an assembled Vps4 conformation and provides insight into the molecular motions the ring structure undergoes in a concerted action to couple ATP hydrolysis to ESCRT-III substrate disassembly. | |||
Asymmetric ring structure of Vps4 required for ESCRT-III disassembly.,Caillat C, Macheboeuf P, Wu Y, McCarthy AA, Boeri-Erba E, Effantin G, Gottlinger HG, Weissenhorn W, Renesto P Nat Commun. 2015 Dec 3;6:8781. doi: 10.1038/ncomms9781. PMID:26632262<ref>PMID:26632262</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 4d82" style="background-color:#fffaf0;"></div> | |||
== References == | |||
<references/> | |||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Revision as of 10:49, 16 December 2015
Metallosphera sedula Vps4 crystal structureMetallosphera sedula Vps4 crystal structure
Structural highlights
Publication Abstract from PubMedThe vacuolar protein sorting 4 AAA-ATPase (Vps4) recycles endosomal sorting complexes required for transport (ESCRT-III) polymers from cellular membranes. Here we present a 3.6-A X-ray structure of ring-shaped Vps4 from Metallosphera sedula (MsVps4), seen as an asymmetric pseudohexamer. Conserved key interface residues are shown to be important for MsVps4 assembly, ATPase activity in vitro, ESCRT-III disassembly in vitro and HIV-1 budding. ADP binding leads to conformational changes within the protomer, which might propagate within the ring structure. All ATP-binding sites are accessible and the pseudohexamer binds six ATP with micromolar affinity in vitro. In contrast, ADP occupies one high-affinity and five low-affinity binding sites in vitro, consistent with conformational asymmetry induced on ATP hydrolysis. The structure represents a snapshot of an assembled Vps4 conformation and provides insight into the molecular motions the ring structure undergoes in a concerted action to couple ATP hydrolysis to ESCRT-III substrate disassembly. Asymmetric ring structure of Vps4 required for ESCRT-III disassembly.,Caillat C, Macheboeuf P, Wu Y, McCarthy AA, Boeri-Erba E, Effantin G, Gottlinger HG, Weissenhorn W, Renesto P Nat Commun. 2015 Dec 3;6:8781. doi: 10.1038/ncomms9781. PMID:26632262[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|