1m2v: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 2: Line 2:
<StructureSection load='1m2v' size='340' side='right' caption='[[1m2v]], [[Resolution|resolution]] 2.75&Aring;' scene=''>
<StructureSection load='1m2v' size='340' side='right' caption='[[1m2v]], [[Resolution|resolution]] 2.75&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[1m2v]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1M2V OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1M2V FirstGlance]. <br>
<table><tr><td colspan='2'>[[1m2v]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Atcc_18824 Atcc 18824]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1M2V OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1M2V FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1m2o|1m2o]]</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1m2o|1m2o]]</td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">Sec23 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=4932 Saccharomyces cerevisiae]), Sar1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=4932 Saccharomyces cerevisiae])</td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">Sec23 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=4932 ATCC 18824]), Sar1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=4932 ATCC 18824])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1m2v FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1m2v OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1m2v RCSB], [http://www.ebi.ac.uk/pdbsum/1m2v PDBsum]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1m2v FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1m2v OCA], [http://pdbe.org/1m2v PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1m2v RCSB], [http://www.ebi.ac.uk/pdbsum/1m2v PDBsum]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
Line 28: Line 28:
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
</div>
<div class="pdbe-citations 1m2v" style="background-color:#fffaf0;"></div>
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Saccharomyces cerevisiae]]
[[Category: Atcc 18824]]
[[Category: Bi, X]]
[[Category: Bi, X]]
[[Category: Corpina, R A]]
[[Category: Corpina, R A]]

Revision as of 20:43, 11 September 2015

Crystal Structure of the yeast Sec23/24 heterodimerCrystal Structure of the yeast Sec23/24 heterodimer

Structural highlights

1m2v is a 2 chain structure with sequence from Atcc 18824. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Gene:Sec23 (ATCC 18824), Sar1 (ATCC 18824)
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum

Function

[SEC23_YEAST] Component of the coat protein complex II (COPII) which promotes the formation of transport vesicles from the endoplasmic reticulum (ER). The coat has two main functions, the physical deformation of the endoplasmic reticulum membrane into vesicles and the selection of cargo molecules. SEC23 interacts with BET3 in order to target TRAPPI complex to COPII involved in internalisation of plasma membrane proteins like the maltose transporter.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [SEC24_YEAST] Component of the coat protein complex II (COPII) which promotes the formation of transport vesicles from the endoplasmic reticulum (ER). The coat has two main functions, the physical deformation of the endoplasmic reticulum membrane into vesicles and the selection of cargo molecules. SEC24 specifically recruits cargo proteins like BET1 or SYS1 to the COPII vesicles. The SEC23/24 complex is also involved in internalisation of plasma membrane proteins like the maltose transporter.[23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

COPII-coated vesicles form on the endoplasmic reticulum by the stepwise recruitment of three cytosolic components: Sar1-GTP to initiate coat formation, Sec23/24 heterodimer to select SNARE and cargo molecules, and Sec13/31 to induce coat polymerization and membrane deformation. Crystallographic analysis of the Saccharomyces cerevisiae Sec23/24-Sar1 complex reveals a bow-tie-shaped structure, 15 nm long, with a membrane-proximal surface that is concave and positively charged to conform to the size and acidic-phospholipid composition of the COPII vesicle. Sec23 and Sar1 form a continuous surface stabilized by a non-hydrolysable GTP analogue, and Sar1 has rearranged from the GDP conformation to expose amino-terminal residues that will probably embed in the bilayer. The GTPase-activating protein (GAP) activity of Sec23 involves an arginine side chain inserted into the Sar1 active site. These observations establish the structural basis for GTP-dependent recruitment of a vesicular coat complex, and for uncoating through coat-controlled GTP hydrolysis.

Structure of the Sec23/24-Sar1 pre-budding complex of the COPII vesicle coat.,Bi X, Corpina RA, Goldberg J Nature. 2002 Sep 19;419(6904):271-7. PMID:12239560[36]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Hicke L, Schekman R. Yeast Sec23p acts in the cytoplasm to promote protein transport from the endoplasmic reticulum to the Golgi complex in vivo and in vitro. EMBO J. 1989 Jun;8(6):1677-84. PMID:2670558
  2. Novick P, Field C, Schekman R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell. 1980 Aug;21(1):205-15. PMID:6996832
  3. Novick P, Ferro S, Schekman R. Order of events in the yeast secretory pathway. Cell. 1981 Aug;25(2):461-9. PMID:7026045
  4. Baker D, Hicke L, Rexach M, Schleyer M, Schekman R. Reconstitution of SEC gene product-dependent intercompartmental protein transport. Cell. 1988 Jul 29;54(3):335-44. PMID:3293799
  5. Ruohola H, Kabcenell AK, Ferro-Novick S. Reconstitution of protein transport from the endoplasmic reticulum to the Golgi complex in yeast: the acceptor Golgi compartment is defective in the sec23 mutant. J Cell Biol. 1988 Oct;107(4):1465-76. PMID:3049622
  6. Kaiser CA, Schekman R. Distinct sets of SEC genes govern transport vesicle formation and fusion early in the secretory pathway. Cell. 1990 May 18;61(4):723-33. PMID:2188733
  7. Hicke L, Yoshihisa T, Schekman R. Sec23p and a novel 105-kDa protein function as a multimeric complex to promote vesicle budding and protein transport from the endoplasmic reticulum. Mol Biol Cell. 1992 Jun;3(6):667-76. PMID:1498369
  8. Liang S, Lacroute F, Kepes F. Multicopy STS1 restores both protein transport and ribosomal RNA stability in a new yeast sec23 mutant allele. Eur J Cell Biol. 1993 Dec;62(2):270-81. PMID:7925484
  9. Yoshihisa T, Barlowe C, Schekman R. Requirement for a GTPase-activating protein in vesicle budding from the endoplasmic reticulum. Science. 1993 Mar 5;259(5100):1466-8. PMID:8451644
  10. Bednarek SY, Ravazzola M, Hosobuchi M, Amherdt M, Perrelet A, Schekman R, Orci L. COPI- and COPII-coated vesicles bud directly from the endoplasmic reticulum in yeast. Cell. 1995 Dec 29;83(7):1183-96. PMID:8548805
  11. Kuehn MJ, Schekman R, Ljungdahl PO. Amino acid permeases require COPII components and the ER resident membrane protein Shr3p for packaging into transport vesicles in vitro. J Cell Biol. 1996 Nov;135(3):585-95. PMID:8909535
  12. Sutterlin C, Doering TL, Schimmoller F, Schroder S, Riezman H. Specific requirements for the ER to Golgi transport of GPI-anchored proteins in yeast. J Cell Sci. 1997 Nov;110 ( Pt 21):2703-14. PMID:9427388
  13. Campbell JL, Schekman R. Selective packaging of cargo molecules into endoplasmic reticulum-derived COPII vesicles. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):837-42. PMID:9023343
  14. Morin-Ganet MN, Rambourg A, Clermont Y, Kepes F. Role of endoplasmic reticulum-derived vesicles in the formation of Golgi elements in sec23 and sec18 Saccharomyces Cerevisiae mutants. Anat Rec. 1998 Jun;251(2):256-64. PMID:9624457
  15. Kuehn MJ, Herrmann JM, Schekman R. COPII-cargo interactions direct protein sorting into ER-derived transport vesicles. Nature. 1998 Jan 8;391(6663):187-90. PMID:9428766 doi:http://dx.doi.org/10.1038/34438
  16. Penalver E, Lucero P, Moreno E, Lagunas R. Clathrin and two components of the COPII complex, Sec23p and Sec24p, could be involved in endocytosis of the Saccharomyces cerevisiae maltose transporter. J Bacteriol. 1999 Apr;181(8):2555-63. PMID:10198022
  17. Shimoni Y, Kurihara T, Ravazzola M, Amherdt M, Orci L, Schekman R. Lst1p and Sec24p cooperate in sorting of the plasma membrane ATPase into COPII vesicles in Saccharomyces cerevisiae. J Cell Biol. 2000 Nov 27;151(5):973-84. PMID:11086000
  18. Matsuoka K, Schekman R. The use of liposomes to study COPII- and COPI-coated vesicle formation and membrane protein sorting. Methods. 2000 Apr;20(4):417-28. PMID:10720463 doi:10.1006/meth.2000.0955
  19. Mossessova E, Bickford LC, Goldberg J. SNARE selectivity of the COPII coat. Cell. 2003 Aug 22;114(4):483-95. PMID:12941276
  20. Sato K, Nakano A. Reconstitution of coat protein complex II (COPII) vesicle formation from cargo-reconstituted proteoliposomes reveals the potential role of GTP hydrolysis by Sar1p in protein sorting. J Biol Chem. 2004 Jan 9;279(2):1330-5. Epub 2003 Nov 19. PMID:14627716 doi:10.1074/jbc.C300457200
  21. Schuldiner M, Collins SR, Thompson NJ, Denic V, Bhamidipati A, Punna T, Ihmels J, Andrews B, Boone C, Greenblatt JF, Weissman JS, Krogan NJ. Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell. 2005 Nov 4;123(3):507-19. PMID:16269340 doi:S0092-8674(05)00868-8
  22. Cai H, Yu S, Menon S, Cai Y, Lazarova D, Fu C, Reinisch K, Hay JC, Ferro-Novick S. TRAPPI tethers COPII vesicles by binding the coat subunit Sec23. Nature. 2007 Feb 22;445(7130):941-4. Epub 2007 Feb 7. PMID:17287728 doi:http://dx.doi.org/10.1038/nature05527
  23. Bednarek SY, Ravazzola M, Hosobuchi M, Amherdt M, Perrelet A, Schekman R, Orci L. COPI- and COPII-coated vesicles bud directly from the endoplasmic reticulum in yeast. Cell. 1995 Dec 29;83(7):1183-96. PMID:8548805
  24. Campbell JL, Schekman R. Selective packaging of cargo molecules into endoplasmic reticulum-derived COPII vesicles. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):837-42. PMID:9023343
  25. Kuehn MJ, Herrmann JM, Schekman R. COPII-cargo interactions direct protein sorting into ER-derived transport vesicles. Nature. 1998 Jan 8;391(6663):187-90. PMID:9428766 doi:http://dx.doi.org/10.1038/34438
  26. Penalver E, Lucero P, Moreno E, Lagunas R. Clathrin and two components of the COPII complex, Sec23p and Sec24p, could be involved in endocytosis of the Saccharomyces cerevisiae maltose transporter. J Bacteriol. 1999 Apr;181(8):2555-63. PMID:10198022
  27. Peng R, De Antoni A, Gallwitz D. Evidence for overlapping and distinct functions in protein transport of coat protein Sec24p family members. J Biol Chem. 2000 Apr 14;275(15):11521-8. PMID:10753972
  28. Higashio H, Kimata Y, Kiriyama T, Hirata A, Kohno K. Sfb2p, a yeast protein related to Sec24p, can function as a constituent of COPII coats required for vesicle budding from the endoplasmic reticulum. J Biol Chem. 2000 Jun 9;275(23):17900-8. PMID:10749860 doi:http://dx.doi.org/10.1074/jbc.M000751200
  29. Shimoni Y, Kurihara T, Ravazzola M, Amherdt M, Orci L, Schekman R. Lst1p and Sec24p cooperate in sorting of the plasma membrane ATPase into COPII vesicles in Saccharomyces cerevisiae. J Cell Biol. 2000 Nov 27;151(5):973-84. PMID:11086000
  30. Matsuoka K, Schekman R. The use of liposomes to study COPII- and COPI-coated vesicle formation and membrane protein sorting. Methods. 2000 Apr;20(4):417-28. PMID:10720463 doi:10.1006/meth.2000.0955
  31. Kurihara T, Hamamoto S, Gimeno RE, Kaiser CA, Schekman R, Yoshihisa T. Sec24p and Iss1p function interchangeably in transport vesicle formation from the endoplasmic reticulum in Saccharomyces cerevisiae. Mol Biol Cell. 2000 Mar;11(3):983-98. PMID:10712514
  32. Miller EA, Beilharz TH, Malkus PN, Lee MC, Hamamoto S, Orci L, Schekman R. Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles. Cell. 2003 Aug 22;114(4):497-509. PMID:12941277
  33. Hamasaki M, Noda T, Ohsumi Y. The early secretory pathway contributes to autophagy in yeast. Cell Struct Funct. 2003 Feb;28(1):49-54. PMID:12655150
  34. Sato K, Nakano A. Reconstitution of coat protein complex II (COPII) vesicle formation from cargo-reconstituted proteoliposomes reveals the potential role of GTP hydrolysis by Sar1p in protein sorting. J Biol Chem. 2004 Jan 9;279(2):1330-5. Epub 2003 Nov 19. PMID:14627716 doi:10.1074/jbc.C300457200
  35. Schuldiner M, Collins SR, Thompson NJ, Denic V, Bhamidipati A, Punna T, Ihmels J, Andrews B, Boone C, Greenblatt JF, Weissman JS, Krogan NJ. Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell. 2005 Nov 4;123(3):507-19. PMID:16269340 doi:S0092-8674(05)00868-8
  36. Bi X, Corpina RA, Goldberg J. Structure of the Sec23/24-Sar1 pre-budding complex of the COPII vesicle coat. Nature. 2002 Sep 19;419(6904):271-7. PMID:12239560 doi:10.1038/nature01040

1m2v, resolution 2.75Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA