1ckr: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
<StructureSection load='1ckr' size='340' side='right' caption='[[1ckr]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''> | <StructureSection load='1ckr' size='340' side='right' caption='[[1ckr]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1ckr]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/ | <table><tr><td colspan='2'>[[1ckr]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Buffalo_rat Buffalo rat]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1CKR OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1CKR FirstGlance]. <br> | ||
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1ckr FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ckr OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1ckr RCSB], [http://www.ebi.ac.uk/pdbsum/1ckr PDBsum]</span></td></tr> | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1ckr FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ckr OCA], [http://pdbe.org/1ckr PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1ckr RCSB], [http://www.ebi.ac.uk/pdbsum/1ckr PDBsum]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
Line 25: | Line 25: | ||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
</div> | </div> | ||
<div class="pdbe-citations 1ckr" style="background-color:#fffaf0;"></div> | |||
==See Also== | ==See Also== | ||
Line 32: | Line 33: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Buffalo rat]] | ||
[[Category: Flynn, G C]] | [[Category: Flynn, G C]] | ||
[[Category: Hu, W]] | [[Category: Hu, W]] |
Revision as of 20:43, 11 September 2015
HIGH RESOLUTION SOLUTION STRUCTURE OF THE HEAT SHOCK COGNATE-70 KD SUBSTRATE BINDING DOMAIN OBTAINED BY MULTIDIMENSIONAL NMR TECHNIQUESHIGH RESOLUTION SOLUTION STRUCTURE OF THE HEAT SHOCK COGNATE-70 KD SUBSTRATE BINDING DOMAIN OBTAINED BY MULTIDIMENSIONAL NMR TECHNIQUES
Structural highlights
Function[HSP7C_RAT] Acts as a repressor of transcriptional activation. Inhibits the transcriptional coactivator activity of CITED1 on Smad-mediated transcription. Chaperone. Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing. May have a scaffolding role in the spliceosome assembly as it contacts all other components of the core complex (By similarity). Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe three-dimensional structure for the substrate-binding domain of the mammalian chaperone protein Hsc70 of the 70 kDa heat shock class (HSP70) is presented. This domain includes residues 383-540 (18 kDa) and is necessary for the binding of the chaperone with substrate proteins and peptides. The high-resolution NMR solution structure is based on 4150 experimental distance constraints leading to an average root-mean-square precision of 0.38 A for the backbone atoms and 0.76 A for all atoms in the beta-sandwich sub-domain. The protein is observed to bind residue Leu539 in its hydrophobic substrate-binding groove by intramolecular interaction. The position of a helical latch differs dramatically from what is observed in the crystal and solution structures of the homologous prokaryotic chaperone DnaK. In the Hsc70 structure, the helix lies in a hydrophobic groove and is anchored by a buried salt-bridge. Residues involved in this salt-bridge appear to be important for the allosteric functioning of the protein. A mechanism for interdomain allosteric modulation of substrate-binding is proposed. It involves large-scale movements of the helical domain, redefining the location of the hinge area that enables such motions. High-resolution solution structure of the 18 kDa substrate-binding domain of the mammalian chaperone protein Hsc70.,Morshauser RC, Hu W, Wang H, Pang Y, Flynn GC, Zuiderweg ER J Mol Biol. 1999 Jun 25;289(5):1387-403. PMID:10373374[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|