2m1w: Difference between revisions
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
</td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2m1x|2m1x]]</td></tr> | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2m1x|2m1x]]</td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">TICAM2, TIRAP3, TIRP, TRAM ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">TICAM2, TIRAP3, TIRP, TRAM ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2m1w FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2m1w OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2m1w RCSB], [http://www.ebi.ac.uk/pdbsum/2m1w PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2m1w FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2m1w OCA], [http://pdbe.org/2m1w PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2m1w RCSB], [http://www.ebi.ac.uk/pdbsum/2m1w PDBsum]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
Line 17: | Line 17: | ||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
</div> | </div> | ||
<div class="pdbe-citations 2m1w" style="background-color:#fffaf0;"></div> | |||
== References == | == References == | ||
<references/> | <references/> |
Revision as of 09:59, 11 September 2015
TICAM-2 TIR domainTICAM-2 TIR domain
Structural highlights
Function[TCAM2_HUMAN] Functions as sorting adapter in LPS-TLR4 signaling to regulate the MYD88-independent pathway during the innate immune response to LPS. Physically bridges TLR4 and TICAM1 and functionally transmits LPS-TRL4 signal to TICAM1; signaling is proposed to occur in early endosomes after endocytosis of TLR4. May also be involved in IL1-triggered NF-kappa-B activation, functioning upstream of IRAK1, IRAK2, TRAF6, and IKBKB; however, reports are controversial. Involved in IL-18 signaling and is proposed to function as a sorting adaptor for MYD88 in IL-18 signaling during adaptive immune response.[1] [2] [3] [4] [5] [6] [7] Isoform 2: Proposed to inhibit LPS-TLR4 signaling at the late endosome by interaction with isoform 1 thereby disrupting the association of isoform 1 with TICAM1. May be involved in TLR4 degradation in late endosomes.[8] [9] [10] [11] [12] [13] [14] Publication Abstract from PubMedHomotypic and heterotypic interactions between Toll/interleukin-1 receptor (TIR) domains in Toll-like receptors (TLRs) and downstream adaptors are essential to evoke innate immune responses. However, such oligomerization properties present intrinsic difficulties in structural studies of TIR domains. Here, using BB-loop mutations that disrupt homotypic interactions, we determined the structures of the monomeric TIR domain-containing adaptor molecule (TICAM)-1 and TICAM-2 TIR domains. Docking of the monomeric structures, together with yeast two hybrid-based mutagenesis assays, reveals that the homotypic interaction between TICAM-2 TIR is indispensable to present a scaffold for recruiting the monomeric moiety of the TICAM-1 TIR dimer. This result proposes a unique idea that oligomerization of upstream TIR domains is crucial for binding of downstream TIR domains. Furthermore, the bivalent nature of each TIR domain dimer can generate a large signaling complex under the activated TLRs, which would recruit downstream signaling molecules efficiently. This model is consistent with previous reports that BB-loop mutants completely abrogate downstream signaling. Structures and interface mapping of the TIR domain-containing adaptor molecules involved in interferon signaling.,Enokizono Y, Kumeta H, Funami K, Horiuchi M, Sarmiento J, Yamashita K, Standley DM, Matsumoto M, Seya T, Inagaki F Proc Natl Acad Sci U S A. 2013 Dec 3;110(49):19908-13. doi:, 10.1073/pnas.1222811110. Epub 2013 Nov 19. PMID:24255114[15] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|