1gl8: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
<StructureSection load='1gl8' size='340' side='right' caption='[[1gl8]], [[NMR_Ensembles_of_Models | 25 NMR models]]' scene=''> | <StructureSection load='1gl8' size='340' side='right' caption='[[1gl8]], [[NMR_Ensembles_of_Models | 25 NMR models]]' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1gl8]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/ | <table><tr><td colspan='2'>[[1gl8]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Spiol Spiol]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1GL8 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1GL8 FirstGlance]. <br> | ||
</td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1fb0|1fb0]], [[1fb6|1fb6]]</td></tr> | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1fb0|1fb0]], [[1fb6|1fb6]]</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1gl8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1gl8 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1gl8 RCSB], [http://www.ebi.ac.uk/pdbsum/1gl8 PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1gl8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1gl8 OCA], [http://pdbe.org/1gl8 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1gl8 RCSB], [http://www.ebi.ac.uk/pdbsum/1gl8 PDBsum]</span></td></tr> | ||
</table> | </table> | ||
== Function == | |||
[[http://www.uniprot.org/uniprot/TRXM_SPIOL TRXM_SPIOL]] Participates in various redox reactions through the reversible oxidation of the active center dithiol to a disulfide. The M form is known to activate NADP-malate dehydrogenase. | |||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 24: | Line 26: | ||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
</div> | </div> | ||
<div class="pdbe-citations 1gl8" style="background-color:#fffaf0;"></div> | |||
==See Also== | ==See Also== | ||
Line 31: | Line 34: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Spiol]] | ||
[[Category: De-Prat-Gay, G]] | [[Category: De-Prat-Gay, G]] | ||
[[Category: Gonzalez, C]] | [[Category: Gonzalez, C]] |
Revision as of 04:40, 11 September 2015
SOLUTION STRUCTURE OF THIOREDOXIN M FROM SPINACH, OXIDIZED FORMSOLUTION STRUCTURE OF THIOREDOXIN M FROM SPINACH, OXIDIZED FORM
Structural highlights
Function[TRXM_SPIOL] Participates in various redox reactions through the reversible oxidation of the active center dithiol to a disulfide. The M form is known to activate NADP-malate dehydrogenase. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedProton NMR spectral resonances of thioredoxin m from spinach have been assigned, and its solution structure has been determined on the basis of 1156 nuclear Overhauser effect- (NOE-) derived distance constraints by using restrained molecular dynamics calculations. The average pairwise root-mean-square deviation (RMSD) for the 25 best NMR structures for the backbone was 1.0 +/- 0.1, when the structurally well-defined residues were considered. The N- and C-terminal segments (1-13 and 118-119) and residues 41-49, comprising the active site, are highly disordered. At the time of concluding this work, a crystal structure of this protein was reported, in which thioredoxin m was found to crystallize as noncovalent dimers. Although the solution and crystal structures are very similar, no evidence was found about the existence of dimers in solution, thus confirming that dimerization is not needed for the regulatory activity of thioredoxin m. The spinach thioredoxin m does not unfold by heat in the range 25-85 degrees C, as revealed by thermal circular dichroic (CD) measurements. However, its unfolding free energy (9.1 +/- 0.8 kcal mol(-1), at pH 5.3 and 25 degrees C) could be determined by extrapolating the free energy values obtained at different concentrations of guanidinium chloride (GdmCl). The folding-unfolding process is two-state as indicated by the coincidence of the CD denaturation curves obtained at far and near UV. The H/D exchange behavior of backbone amide protons was analyzed. The slowest-exchanging protons, requiring a global-unfolding mechanism in order to exchange, are those from beta2, beta3, and beta4, the central strands of the beta-sheet, which constitute the main element of the core of the protein. The free energies obtained from exchange measurements of protons belonging to the alpha-helices are lower than those derived from GdmCl denaturation studies, indicating that those protons exchange by local-unfolding mechanisms. Three-dimensional solution structure and stability of thioredoxin m from spinach.,Neira JL, Gonzalez C, Toiron C, de Prat-Gay G, Rico M Biochemistry. 2001 Dec 18;40(50):15246-56. PMID:11735407[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences |
|