1jj2: Difference between revisions
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CD:CADMIUM+ION'>CD</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CD:CADMIUM+ION'>CD</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene></td></tr> | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1ffk|1ffk]], [[1c04|1c04]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1ffk|1ffk]], [[1c04|1c04]]</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1jj2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1jj2 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1jj2 RCSB], [http://www.ebi.ac.uk/pdbsum/1jj2 PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1jj2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1jj2 OCA], [http://pdbe.org/1jj2 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1jj2 RCSB], [http://www.ebi.ac.uk/pdbsum/1jj2 PDBsum]</span></td></tr> | ||
</table> | </table> | ||
{{Large structure}} | |||
== Function == | == Function == | ||
[[http://www.uniprot.org/uniprot/RL13_HALMA RL13_HALMA]] This protein is one of the early assembly proteins of the 50S ribosomal subunit (By similarity). Binds to 23S rRNA.[HAMAP-Rule:MF_01366] [[http://www.uniprot.org/uniprot/RL24_HALMA RL24_HALMA]] One of two assembly initiator proteins, it binds directly to the 5'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit (By similarity).[HAMAP-Rule:MF_01326_A] Stabilizes the tertiary rRNA structure within the 23S rRNA domain (domain I) to which it binds. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01326_A] [[http://www.uniprot.org/uniprot/RL6_HALMA RL6_HALMA]] This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center.[HAMAP-Rule:MF_01365] [[http://www.uniprot.org/uniprot/RL32_HALMA RL32_HALMA]] Binds to the 23S rRNA.[HAMAP-Rule:MF_00810] [[http://www.uniprot.org/uniprot/RL19E_HALMA RL19E_HALMA]] Binds to the 23S rRNA. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01475] [[http://www.uniprot.org/uniprot/RL24E_HALMA RL24E_HALMA]] Binds to the 23S rRNA.[HAMAP-Rule:MF_00773] [[http://www.uniprot.org/uniprot/RL21_HALMA RL21_HALMA]] This is one of 5 proteins that mediate the attachment of the 5S rRNA onto the large ribosomal subunit, stabilizing the orientation of adjacent RNA domains.[HAMAP-Rule:MF_00369] [[http://www.uniprot.org/uniprot/RL44E_HALMA RL44E_HALMA]] Binds to the 23S rRNA. Binds deacetylated tRNA in the E site; when the tRNA binds a stretch of 7 amino acids are displaced to allow binding.[HAMAP-Rule:MF_01476] [[http://www.uniprot.org/uniprot/RL29_HALMA RL29_HALMA]] Stabilizes the tertiary rRNA structure within the 23S rRNA domain (domain I) to which it binds. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_00374] [[http://www.uniprot.org/uniprot/RL15_HALMA RL15_HALMA]] Binds to the 23S rRNA.[HAMAP-Rule:MF_01341_A] [[http://www.uniprot.org/uniprot/RL18E_HALMA RL18E_HALMA]] Stabilizes the tertiary rRNA structure within the 23S rRNA domain (domain II) to which it binds.[HAMAP-Rule:MF_00329] [[http://www.uniprot.org/uniprot/RL39_HALMA RL39_HALMA]] Binds to the 23S rRNA. Forms part of the polypeptide exit tunnel.[HAMAP-Rule:MF_00629] [[http://www.uniprot.org/uniprot/RL5_HALMA RL5_HALMA]] This is 1 of 5 proteins that mediates the attachment of the 5S rRNA onto the large ribosomal subunit, stabilizing the orientation of adjacent RNA domains. Forms part of the central protuberance. Modeling places the A and P site tRNAs in close proximity to this protein; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. In the 70S ribosome it is thought to contact protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement.[HAMAP-Rule:MF_01333_A] [[http://www.uniprot.org/uniprot/RL31_HALMA RL31_HALMA]] Binds to the 23S rRNA. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_00410] [[http://www.uniprot.org/uniprot/RL37_HALMA RL37_HALMA]] Binds to the 23S rRNA.[HAMAP-Rule:MF_00547] [[http://www.uniprot.org/uniprot/RL2_HALMA RL2_HALMA]] One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome (By similarity).[HAMAP-Rule:MF_01320_A] [[http://www.uniprot.org/uniprot/RLA0_HALMA RLA0_HALMA]] Ribosomal protein L10e is the functional equivalent of E.coli protein L10.[HAMAP-Rule:MF_00280] [[http://www.uniprot.org/uniprot/RL14_HALMA RL14_HALMA]] Forms part of two intersubunit bridges in the 70S ribosome (By similarity). Binds to 23S rRNA.[HAMAP-Rule:MF_01367] [[http://www.uniprot.org/uniprot/RL18_HALMA RL18_HALMA]] This is one of 5 proteins that mediate the attachment of the 5S rRNA onto the large ribosomal subunit, where it forms part of the central protuberance and stabilizes the orientation of adjacent RNA domains.[HAMAP-Rule:MF_01337_A] [[http://www.uniprot.org/uniprot/RL23_HALMA RL23_HALMA]] Binds to a specific region on the 23S rRNA. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01369] [[http://www.uniprot.org/uniprot/RL7A_HALMA RL7A_HALMA]] Multifunctional RNA-binding protein that recognizes the K-turn motif in ribosomal RNA, box H/ACA and box C/D sRNAs (By similarity).[HAMAP-Rule:MF_00326] [[http://www.uniprot.org/uniprot/RL3_HALMA RL3_HALMA]] One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit (By similarity).[HAMAP-Rule:MF_01325_A] [[http://www.uniprot.org/uniprot/RL30_HALMA RL30_HALMA]] This is one of 5 proteins that mediate the attachment of the 5S rRNA onto the large ribosomal subunit, stabilizing the orientation of adjacent RNA domains.[HAMAP-Rule:MF_01371] [[http://www.uniprot.org/uniprot/RL22_HALMA RL22_HALMA]] This protein binds specifically to 23S rRNA. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome (By similarity).[HAMAP-Rule:MF_01331] Contacts all 6 domains of the 23S rRNA, helping stabilize their relative orientation. An extended beta-hairpin in the C-terminus forms part of the polypeptide exit tunnel, in which it helps forms a bend with protein L4, while most of the rest of the protein is located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01331] [[http://www.uniprot.org/uniprot/RL4_HALMA RL4_HALMA]] One of the primary rRNA binding proteins, this protein initially binds near the 5'-end of the 23S rRNA. It is important during the early stages of 50S assembly (By similarity).[HAMAP-Rule:MF_01328_A] Makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit.[HAMAP-Rule:MF_01328_A] Forms part of the polypeptide exit tunnel, in which it helps forms a bend with protein L22. Contacts the macrolide antibiotic spiramycin in the polypeptide exit tunnel.[HAMAP-Rule:MF_01328_A] | [[http://www.uniprot.org/uniprot/RL13_HALMA RL13_HALMA]] This protein is one of the early assembly proteins of the 50S ribosomal subunit (By similarity). Binds to 23S rRNA.[HAMAP-Rule:MF_01366] [[http://www.uniprot.org/uniprot/RL24_HALMA RL24_HALMA]] One of two assembly initiator proteins, it binds directly to the 5'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit (By similarity).[HAMAP-Rule:MF_01326_A] Stabilizes the tertiary rRNA structure within the 23S rRNA domain (domain I) to which it binds. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01326_A] [[http://www.uniprot.org/uniprot/RL6_HALMA RL6_HALMA]] This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center.[HAMAP-Rule:MF_01365] [[http://www.uniprot.org/uniprot/RL32_HALMA RL32_HALMA]] Binds to the 23S rRNA.[HAMAP-Rule:MF_00810] [[http://www.uniprot.org/uniprot/RL19E_HALMA RL19E_HALMA]] Binds to the 23S rRNA. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01475] [[http://www.uniprot.org/uniprot/RL24E_HALMA RL24E_HALMA]] Binds to the 23S rRNA.[HAMAP-Rule:MF_00773] [[http://www.uniprot.org/uniprot/RL21_HALMA RL21_HALMA]] This is one of 5 proteins that mediate the attachment of the 5S rRNA onto the large ribosomal subunit, stabilizing the orientation of adjacent RNA domains.[HAMAP-Rule:MF_00369] [[http://www.uniprot.org/uniprot/RL44E_HALMA RL44E_HALMA]] Binds to the 23S rRNA. Binds deacetylated tRNA in the E site; when the tRNA binds a stretch of 7 amino acids are displaced to allow binding.[HAMAP-Rule:MF_01476] [[http://www.uniprot.org/uniprot/RL29_HALMA RL29_HALMA]] Stabilizes the tertiary rRNA structure within the 23S rRNA domain (domain I) to which it binds. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_00374] [[http://www.uniprot.org/uniprot/RL15_HALMA RL15_HALMA]] Binds to the 23S rRNA.[HAMAP-Rule:MF_01341_A] [[http://www.uniprot.org/uniprot/RL18E_HALMA RL18E_HALMA]] Stabilizes the tertiary rRNA structure within the 23S rRNA domain (domain II) to which it binds.[HAMAP-Rule:MF_00329] [[http://www.uniprot.org/uniprot/RL39_HALMA RL39_HALMA]] Binds to the 23S rRNA. Forms part of the polypeptide exit tunnel.[HAMAP-Rule:MF_00629] [[http://www.uniprot.org/uniprot/RL5_HALMA RL5_HALMA]] This is 1 of 5 proteins that mediates the attachment of the 5S rRNA onto the large ribosomal subunit, stabilizing the orientation of adjacent RNA domains. Forms part of the central protuberance. Modeling places the A and P site tRNAs in close proximity to this protein; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. In the 70S ribosome it is thought to contact protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement.[HAMAP-Rule:MF_01333_A] [[http://www.uniprot.org/uniprot/RL31_HALMA RL31_HALMA]] Binds to the 23S rRNA. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_00410] [[http://www.uniprot.org/uniprot/RL37_HALMA RL37_HALMA]] Binds to the 23S rRNA.[HAMAP-Rule:MF_00547] [[http://www.uniprot.org/uniprot/RL2_HALMA RL2_HALMA]] One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome (By similarity).[HAMAP-Rule:MF_01320_A] [[http://www.uniprot.org/uniprot/RLA0_HALMA RLA0_HALMA]] Ribosomal protein L10e is the functional equivalent of E.coli protein L10.[HAMAP-Rule:MF_00280] [[http://www.uniprot.org/uniprot/RL14_HALMA RL14_HALMA]] Forms part of two intersubunit bridges in the 70S ribosome (By similarity). Binds to 23S rRNA.[HAMAP-Rule:MF_01367] [[http://www.uniprot.org/uniprot/RL18_HALMA RL18_HALMA]] This is one of 5 proteins that mediate the attachment of the 5S rRNA onto the large ribosomal subunit, where it forms part of the central protuberance and stabilizes the orientation of adjacent RNA domains.[HAMAP-Rule:MF_01337_A] [[http://www.uniprot.org/uniprot/RL23_HALMA RL23_HALMA]] Binds to a specific region on the 23S rRNA. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01369] [[http://www.uniprot.org/uniprot/RL7A_HALMA RL7A_HALMA]] Multifunctional RNA-binding protein that recognizes the K-turn motif in ribosomal RNA, box H/ACA and box C/D sRNAs (By similarity).[HAMAP-Rule:MF_00326] [[http://www.uniprot.org/uniprot/RL3_HALMA RL3_HALMA]] One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit (By similarity).[HAMAP-Rule:MF_01325_A] [[http://www.uniprot.org/uniprot/RL30_HALMA RL30_HALMA]] This is one of 5 proteins that mediate the attachment of the 5S rRNA onto the large ribosomal subunit, stabilizing the orientation of adjacent RNA domains.[HAMAP-Rule:MF_01371] [[http://www.uniprot.org/uniprot/RL22_HALMA RL22_HALMA]] This protein binds specifically to 23S rRNA. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome (By similarity).[HAMAP-Rule:MF_01331] Contacts all 6 domains of the 23S rRNA, helping stabilize their relative orientation. An extended beta-hairpin in the C-terminus forms part of the polypeptide exit tunnel, in which it helps forms a bend with protein L4, while most of the rest of the protein is located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01331] [[http://www.uniprot.org/uniprot/RL4_HALMA RL4_HALMA]] One of the primary rRNA binding proteins, this protein initially binds near the 5'-end of the 23S rRNA. It is important during the early stages of 50S assembly (By similarity).[HAMAP-Rule:MF_01328_A] Makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit.[HAMAP-Rule:MF_01328_A] Forms part of the polypeptide exit tunnel, in which it helps forms a bend with protein L22. Contacts the macrolide antibiotic spiramycin in the polypeptide exit tunnel.[HAMAP-Rule:MF_01328_A] | ||
Line 27: | Line 28: | ||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
</div> | </div> | ||
<div class="pdbe-citations 1jj2" style="background-color:#fffaf0;"></div> | |||
==See Also== | ==See Also== |
Revision as of 16:07, 10 September 2015
Fully Refined Crystal Structure of the Haloarcula marismortui Large Ribosomal Subunit at 2.4 Angstrom ResolutionFully Refined Crystal Structure of the Haloarcula marismortui Large Ribosomal Subunit at 2.4 Angstrom Resolution
Structural highlights
Warning: this is a large structure, and loading might take a long time or not happen at all. Function[RL13_HALMA] This protein is one of the early assembly proteins of the 50S ribosomal subunit (By similarity). Binds to 23S rRNA.[HAMAP-Rule:MF_01366] [RL24_HALMA] One of two assembly initiator proteins, it binds directly to the 5'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit (By similarity).[HAMAP-Rule:MF_01326_A] Stabilizes the tertiary rRNA structure within the 23S rRNA domain (domain I) to which it binds. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01326_A] [RL6_HALMA] This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center.[HAMAP-Rule:MF_01365] [RL32_HALMA] Binds to the 23S rRNA.[HAMAP-Rule:MF_00810] [RL19E_HALMA] Binds to the 23S rRNA. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01475] [RL24E_HALMA] Binds to the 23S rRNA.[HAMAP-Rule:MF_00773] [RL21_HALMA] This is one of 5 proteins that mediate the attachment of the 5S rRNA onto the large ribosomal subunit, stabilizing the orientation of adjacent RNA domains.[HAMAP-Rule:MF_00369] [RL44E_HALMA] Binds to the 23S rRNA. Binds deacetylated tRNA in the E site; when the tRNA binds a stretch of 7 amino acids are displaced to allow binding.[HAMAP-Rule:MF_01476] [RL29_HALMA] Stabilizes the tertiary rRNA structure within the 23S rRNA domain (domain I) to which it binds. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_00374] [RL15_HALMA] Binds to the 23S rRNA.[HAMAP-Rule:MF_01341_A] [RL18E_HALMA] Stabilizes the tertiary rRNA structure within the 23S rRNA domain (domain II) to which it binds.[HAMAP-Rule:MF_00329] [RL39_HALMA] Binds to the 23S rRNA. Forms part of the polypeptide exit tunnel.[HAMAP-Rule:MF_00629] [RL5_HALMA] This is 1 of 5 proteins that mediates the attachment of the 5S rRNA onto the large ribosomal subunit, stabilizing the orientation of adjacent RNA domains. Forms part of the central protuberance. Modeling places the A and P site tRNAs in close proximity to this protein; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. In the 70S ribosome it is thought to contact protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement.[HAMAP-Rule:MF_01333_A] [RL31_HALMA] Binds to the 23S rRNA. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_00410] [RL37_HALMA] Binds to the 23S rRNA.[HAMAP-Rule:MF_00547] [RL2_HALMA] One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome (By similarity).[HAMAP-Rule:MF_01320_A] [RLA0_HALMA] Ribosomal protein L10e is the functional equivalent of E.coli protein L10.[HAMAP-Rule:MF_00280] [RL14_HALMA] Forms part of two intersubunit bridges in the 70S ribosome (By similarity). Binds to 23S rRNA.[HAMAP-Rule:MF_01367] [RL18_HALMA] This is one of 5 proteins that mediate the attachment of the 5S rRNA onto the large ribosomal subunit, where it forms part of the central protuberance and stabilizes the orientation of adjacent RNA domains.[HAMAP-Rule:MF_01337_A] [RL23_HALMA] Binds to a specific region on the 23S rRNA. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01369] [RL7A_HALMA] Multifunctional RNA-binding protein that recognizes the K-turn motif in ribosomal RNA, box H/ACA and box C/D sRNAs (By similarity).[HAMAP-Rule:MF_00326] [RL3_HALMA] One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit (By similarity).[HAMAP-Rule:MF_01325_A] [RL30_HALMA] This is one of 5 proteins that mediate the attachment of the 5S rRNA onto the large ribosomal subunit, stabilizing the orientation of adjacent RNA domains.[HAMAP-Rule:MF_01371] [RL22_HALMA] This protein binds specifically to 23S rRNA. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome (By similarity).[HAMAP-Rule:MF_01331] Contacts all 6 domains of the 23S rRNA, helping stabilize their relative orientation. An extended beta-hairpin in the C-terminus forms part of the polypeptide exit tunnel, in which it helps forms a bend with protein L4, while most of the rest of the protein is located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01331] [RL4_HALMA] One of the primary rRNA binding proteins, this protein initially binds near the 5'-end of the 23S rRNA. It is important during the early stages of 50S assembly (By similarity).[HAMAP-Rule:MF_01328_A] Makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit.[HAMAP-Rule:MF_01328_A] Forms part of the polypeptide exit tunnel, in which it helps forms a bend with protein L22. Contacts the macrolide antibiotic spiramycin in the polypeptide exit tunnel.[HAMAP-Rule:MF_01328_A] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedAnalysis of the Haloarcula marismortui large ribosomal subunit has revealed a common RNA structure that we call the kink-turn, or K-turn. The six K-turns in H.marismortui 23S rRNA superimpose with an r.m.s.d. of 1.7 A. There are two K-turns in the structure of Thermus thermophilus 16S rRNA, and the structures of U4 snRNA and L30e mRNA fragments form K-turns. The structure has a kink in the phosphodiester backbone that causes a sharp turn in the RNA helix. Its asymmetric internal loop is flanked by C-G base pairs on one side and sheared G-A base pairs on the other, with an A-minor interaction between these two helical stems. A derived consensus secondary structure for the K-turn includes 10 consensus nucleotides out of 15, and predicts its presence in the 5'-UTR of L10 mRNA, helix 78 in Escherichia coli 23S rRNA and human RNase MRP. Five K-turns in 23S rRNA interact with nine proteins. While the observed K-turns interact with proteins of unrelated structures in different ways, they interact with L7Ae and two homologous proteins in the same way. The kink-turn: a new RNA secondary structure motif.,Klein DJ, Schmeing TM, Moore PB, Steitz TA EMBO J. 2001 Aug 1;20(15):4214-21. PMID:11483524[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See Also
References
|
|