1jbk: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
<StructureSection load='1jbk' size='340' side='right' caption='[[1jbk]], [[Resolution|resolution]] 1.80Å' scene=''> | <StructureSection load='1jbk' size='340' side='right' caption='[[1jbk]], [[Resolution|resolution]] 1.80Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1jbk]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/ | <table><tr><td colspan='2'>[[1jbk]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1JBK OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1JBK FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1nbd|1nbd]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1nbd|1nbd]]</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1jbk FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1jbk OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1jbk RCSB], [http://www.ebi.ac.uk/pdbsum/1jbk PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1jbk FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1jbk OCA], [http://pdbe.org/1jbk PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1jbk RCSB], [http://www.ebi.ac.uk/pdbsum/1jbk PDBsum]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
Line 27: | Line 27: | ||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
</div> | </div> | ||
<div class="pdbe-citations 1jbk" style="background-color:#fffaf0;"></div> | |||
==See Also== | ==See Also== | ||
Line 34: | Line 35: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Bacillus coli migula 1895]] | ||
[[Category: Bingdong, S]] | [[Category: Bingdong, S]] | ||
[[Category: Jingzhi, L]] | [[Category: Jingzhi, L]] | ||
[[Category: Beta barrel]] | [[Category: Beta barrel]] | ||
[[Category: Chaperone]] | [[Category: Chaperone]] |
Revision as of 09:53, 10 September 2015
Crystal Structure of the First Nucelotide Binding Domain of ClpBCrystal Structure of the First Nucelotide Binding Domain of ClpB
Structural highlights
Function[CLPB_ECOLI] Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE. Acts before DnaK, in the processing of protein aggregates. Protein binding stimulates the ATPase activity; ATP hydrolysis unfolds the denatured protein aggregates, which probably helps expose new hydrophobic binding sites on the surface of ClpB-bound aggregates, contributing to the solubilization and refolding of denatured protein aggregates by DnaK.[1] [2] [3] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedE. coli Hsp100 ClpB was recently identified as a critical part in a multi-chaperone system to play important roles in protein folding, protein transport and degradation in cell physiology. ClpB contains two nucleotide-binding domains (NBD1 and NBD2) within their primary sequences. NBD1 and NBD2 of ClpB can be classified as members of the large ATPase family known as ATPases associated with various cellular activities (AAA). To investigate how ClpB performs its ATPase activities for its chaperone activity, we have determined the crystal structure of ClpB nucleotide-binding domain 1 (NBD1) by MAD method to 1.80 A resolution. The NBD1 monomer structure contains one domain that comprises 11 alpha-helices and six beta-strands. When compared with the typical AAA structures, the crystal structure of ClpB NBD1 reveals a novel AAA topology with six-stranded beta-sheet as its core. The N-terminal portion of NBD1 structure has an extra beta-strand flanked by two extra alpha-helices that are not present in other AAA structures. Moreover, the NBD1 structure does not have a C-terminal helical domain as other AAA proteins do. No nucleotide molecule is bound with ClpB NBD1 in the crystal structure probably due to lack of the C-terminal helix domain in the structure. Isothermal titration calorimetry (ITC) studies of ClpB NBD1 and other ClpB deletion mutations showed that either ClpB NBD1 or NBD2 alone does not bind to nucleotides. However, ClpB NBD2 combined with ClpB C-terminal fragment can interact with one ADP or ATP molecule. ITC data also indicated that full-length ClpB could bind two ADP molecules or one ATP analogue ATPgammaS molecule. Further ATPase activity studies of ClpB and ClpB deletion mutants showed that only wild-type ClpB have ATPase activity. None of ClpB NBD1 domain, NBD2 domain and NBD2 with C-terminal fragment has detectable ATPase activities. On the basis of our structural and mutagenesis data, we proposed a "see-saw" model to illustrate the mechanisms by which ClpB performs its ATPase activities for chaperone functions. Crystal structure of E. coli Hsp100 ClpB nucleotide-binding domain 1 (NBD1) and mechanistic studies on ClpB ATPase activity.,Li J, Sha B J Mol Biol. 2002 May 10;318(4):1127-37. PMID:12054807[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|