1y0x: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
<StructureSection load='1y0x' size='340' side='right' caption='[[1y0x]], [[Resolution|resolution]] 3.10Å' scene=''> | <StructureSection load='1y0x' size='340' side='right' caption='[[1y0x]], [[Resolution|resolution]] 3.10Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1y0x]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/ | <table><tr><td colspan='2'>[[1y0x]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1Y0X OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1Y0X FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CAC:CACODYLATE+ION'>CAC</scene>, <scene name='pdbligand=T44:3,5,3,5-TETRAIODO-L-THYRONINE'>T44</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CAC:CACODYLATE+ION'>CAC</scene>, <scene name='pdbligand=T44:3,5,3,5-TETRAIODO-L-THYRONINE'>T44</scene></td></tr> | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1xzx|1xzx]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1xzx|1xzx]]</td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">THRB, ERBA2, NR1A2, THR1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">THRB, ERBA2, NR1A2, THR1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1y0x FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1y0x OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1y0x RCSB], [http://www.ebi.ac.uk/pdbsum/1y0x PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1y0x FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1y0x OCA], [http://pdbe.org/1y0x PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1y0x RCSB], [http://www.ebi.ac.uk/pdbsum/1y0x PDBsum]</span></td></tr> | ||
</table> | </table> | ||
== Disease == | == Disease == | ||
[[http://www.uniprot.org/uniprot/ | [[http://www.uniprot.org/uniprot/THB_HUMAN THB_HUMAN]] Defects in THRB are the cause of generalized thyroid hormone resistance (GTHR) [MIM:[http://omim.org/entry/188570 188570]]. GTHR is a disease characterized by goiter, abnormal mental functions, increased susceptibility to infections, abnormal growth and bone maturation, tachycardia and deafness. Affected individuals may also have attention deficit-hyperactivity disorders (ADHD) and language difficulties. GTHR patients also have high levels of circulating thyroid hormones (T3-T4), with normal or slightly elevated thyroid stimulating hormone (TSH).<ref>PMID:2510172</ref> <ref>PMID:2153155</ref> <ref>PMID:1846005</ref> <ref>PMID:1661299</ref> <ref>PMID:1653889</ref> <ref>PMID:1563081</ref> <ref>PMID:1314846</ref> <ref>PMID:1619012</ref> <ref>PMID:1587388</ref> <ref>PMID:1324420</ref> <ref>PMID:8514853</ref> <ref>PMID:8175986</ref> <ref>PMID:7833659</ref> <ref>PMID:8664910</ref> <ref>PMID:8889584</ref> <ref>PMID:10660344</ref> <ref>PMID:16804041</ref> <ref>PMID:19268523</ref> Defects in THRB are the cause of generalized thyroid hormone resistance autosomal recessive (GTHRAR) [MIM:[http://omim.org/entry/274300 274300]]. An autosomal recessive disorder characterized by goiter, clinical euthyroidism, end-organ unresponsiveness to thyroid hormone, abnormal growth and bone maturation, and deafness. Patients also have high levels of circulating thyroid hormones, with elevated thyroid stimulating hormone. Defects in THRB are the cause of selective pituitary thyroid hormone resistance (PRTH) [MIM:[http://omim.org/entry/145650 145650]]; also known as familial hyperthyroidism due to inappropriate thyrotropin secretion. PRTH is a variant form of thyroid hormone resistance and is characterized by clinical hyperthyroidism, with elevated free thyroid hormones, but inappropriately normal serum TSH. Unlike GRTH, where the syndrome usually segregates with a dominant allele, the mode of inheritance in PRTH has not been established.<ref>PMID:7528740</ref> <ref>PMID:8381821</ref> | ||
== Function == | == Function == | ||
[[http://www.uniprot.org/uniprot/ | [[http://www.uniprot.org/uniprot/THB_HUMAN THB_HUMAN]] High affinity receptor for triiodothyronine.<ref>PMID:17418816</ref> | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 30: | Line 30: | ||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
</div> | </div> | ||
<div class="pdbe-citations 1y0x" style="background-color:#fffaf0;"></div> | |||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Human]] | ||
[[Category: Apriletti, J W]] | [[Category: Apriletti, J W]] | ||
[[Category: Baxter, J D]] | [[Category: Baxter, J D]] |
Revision as of 03:59, 10 September 2015
Thyroxine-Thyroid Hormone Receptor InteractionsThyroxine-Thyroid Hormone Receptor Interactions
Structural highlights
Disease[THB_HUMAN] Defects in THRB are the cause of generalized thyroid hormone resistance (GTHR) [MIM:188570]. GTHR is a disease characterized by goiter, abnormal mental functions, increased susceptibility to infections, abnormal growth and bone maturation, tachycardia and deafness. Affected individuals may also have attention deficit-hyperactivity disorders (ADHD) and language difficulties. GTHR patients also have high levels of circulating thyroid hormones (T3-T4), with normal or slightly elevated thyroid stimulating hormone (TSH).[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] Defects in THRB are the cause of generalized thyroid hormone resistance autosomal recessive (GTHRAR) [MIM:274300]. An autosomal recessive disorder characterized by goiter, clinical euthyroidism, end-organ unresponsiveness to thyroid hormone, abnormal growth and bone maturation, and deafness. Patients also have high levels of circulating thyroid hormones, with elevated thyroid stimulating hormone. Defects in THRB are the cause of selective pituitary thyroid hormone resistance (PRTH) [MIM:145650]; also known as familial hyperthyroidism due to inappropriate thyrotropin secretion. PRTH is a variant form of thyroid hormone resistance and is characterized by clinical hyperthyroidism, with elevated free thyroid hormones, but inappropriately normal serum TSH. Unlike GRTH, where the syndrome usually segregates with a dominant allele, the mode of inheritance in PRTH has not been established.[19] [20] Function[THB_HUMAN] High affinity receptor for triiodothyronine.[21] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThyroid hormone (TH) actions are mediated by nuclear receptors (TRs alpha and beta) that bind triiodothyronine (T(3), 3,5,3'-triiodo-l-thyronine) with high affinity, and its precursor thyroxine (T(4), 3,5,3',5'-tetraiodo-l-thyronine) with lower affinity. T(4) contains a bulky 5' iodine group absent from T(3). Because T(3) is buried in the core of the ligand binding domain (LBD), we have predicted that TH analogues with 5' substituents should fit poorly into the ligand binding pocket and perhaps behave as antagonists. We therefore examined how T(4) affects TR activity and conformation. We obtained several lines of evidence (ligand dissociation kinetics, migration on hydrophobic interaction columns, and non-denaturing gels) that TR-T(4) complexes adopt a conformation that differs from TR-T(3) complexes in solution. Nonetheless, T(4) behaves as an agonist in vitro (in effects on coregulator and DNA binding) and in cells, when conversion to T(3) does not contribute to agonist activity. We determined x-ray crystal structures of the TRbeta LBD in complex with T(3) and T(4) at 2.5-A and 3.1-A resolution. Comparison of the structures reveals that TRbeta accommodates T(4) through subtle alterations in the loop connecting helices 11 and 12 and amino acid side chains in the pocket, which, together, enlarge a niche that permits helix 12 to pack over the 5' iodine and complete the coactivator binding surface. While T(3) is the major active TH, our results suggest that T(4) could activate nuclear TRs at appropriate concentrations. The ability of TR to adapt to the 5' extension should be considered in TR ligand design. Thyroxine-thyroid hormone receptor interactions.,Sandler B, Webb P, Apriletti JW, Huber BR, Togashi M, Cunha Lima ST, Juric S, Nilsson S, Wagner R, Fletterick RJ, Baxter JD J Biol Chem. 2004 Dec 31;279(53):55801-8. Epub 2004 Oct 4. PMID:15466465[22] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|