4v8t: Difference between revisions
m Protected "4v8t" [edit=sysop:move=sysop] |
No edit summary |
||
Line 2: | Line 2: | ||
<StructureSection load='4v8t' size='340' side='right' caption='[[4v8t]], [[Resolution|resolution]] 8.10Å' scene=''> | <StructureSection load='4v8t' size='340' side='right' caption='[[4v8t]], [[Resolution|resolution]] 8.10Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4v8t]] is a 50 chain structure with sequence from [http://en.wikipedia.org/wiki/ ] and [http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. This structure supersedes the now removed PDB entries | <table><tr><td colspan='2'>[[4v8t]] is a 50 chain structure with sequence from [http://en.wikipedia.org/wiki/ ] and [http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. This structure supersedes and combines the now removed PDB entries [http://oca.weizmann.ac.il/oca-bin/send-pdb?obs=1&id=4b6a 4b6a] and [http://oca.weizmann.ac.il/oca-bin/send-pdb?obs=1&id=4b6b 4b6b]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4V8T OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4V8T FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | ||
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=UNK:UNKNOWN'>UNK</scene></td></tr> | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=UNK:UNKNOWN'>UNK</scene></td></tr> | ||
Line 8: | Line 8: | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4v8t FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4v8t OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4v8t RCSB], [http://www.ebi.ac.uk/pdbsum/4v8t PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4v8t FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4v8t OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4v8t RCSB], [http://www.ebi.ac.uk/pdbsum/4v8t PDBsum]</span></td></tr> | ||
</table> | </table> | ||
{{Large structure}} | |||
== Function == | == Function == | ||
[[http://www.uniprot.org/uniprot/RL25_YEAST RL25_YEAST]] This protein binds to a specific region on the 26S rRNA. [[http://www.uniprot.org/uniprot/RL11B_YEAST RL11B_YEAST]] Binds to 5S ribosomal RNA. [[http://www.uniprot.org/uniprot/RL401_YEAST RL401_YEAST]] Ubiquitin: exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-6-linked may be involved in DNA repair; Lys-11-linked is involved in ERAD (endoplasmic reticulum-associated degradation) and in cell-cycle regulation; Lys-29-linked is involved in lysosomal degradation; Lys-33-linked is involved in kinase modification; Lys-48-linked is involved in protein degradation via the proteasome; Lys-63-linked is involved in endocytosis, and DNA-damage responses. Linear polymer chains formed via attachment by the initiator Met lead to cell signaling. Ubiquitin is usually conjugated to Lys residues of target proteins, however, in rare cases, conjugation to Cys or Ser residues has been observed. When polyubiquitin is free (unanchored-polyubiquitin), it also has distinct roles, such as in activation of protein kinases, and in signaling (By similarity).<ref>PMID:23169626</ref> 60S ribosomal protein L40: component of the 60S subunit of the ribosome. Ribosomal protein L40 is essential for translation of a subset of cellular transcripts, including stress response transcripts, such as DDR2.<ref>PMID:23169626</ref> [[http://www.uniprot.org/uniprot/RL4A_YEAST RL4A_YEAST]] Participates in the regulation of the accumulation of its own mRNA.<ref>PMID:2065661</ref> | [[http://www.uniprot.org/uniprot/RL25_YEAST RL25_YEAST]] This protein binds to a specific region on the 26S rRNA. [[http://www.uniprot.org/uniprot/RL11B_YEAST RL11B_YEAST]] Binds to 5S ribosomal RNA. [[http://www.uniprot.org/uniprot/RL401_YEAST RL401_YEAST]] Ubiquitin: exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-6-linked may be involved in DNA repair; Lys-11-linked is involved in ERAD (endoplasmic reticulum-associated degradation) and in cell-cycle regulation; Lys-29-linked is involved in lysosomal degradation; Lys-33-linked is involved in kinase modification; Lys-48-linked is involved in protein degradation via the proteasome; Lys-63-linked is involved in endocytosis, and DNA-damage responses. Linear polymer chains formed via attachment by the initiator Met lead to cell signaling. Ubiquitin is usually conjugated to Lys residues of target proteins, however, in rare cases, conjugation to Cys or Ser residues has been observed. When polyubiquitin is free (unanchored-polyubiquitin), it also has distinct roles, such as in activation of protein kinases, and in signaling (By similarity).<ref>PMID:23169626</ref> 60S ribosomal protein L40: component of the 60S subunit of the ribosome. Ribosomal protein L40 is essential for translation of a subset of cellular transcripts, including stress response transcripts, such as DDR2.<ref>PMID:23169626</ref> [[http://www.uniprot.org/uniprot/RL37A_YEAST RL37A_YEAST]] Binds to the 23S rRNA (By similarity). [[http://www.uniprot.org/uniprot/RL4A_YEAST RL4A_YEAST]] Participates in the regulation of the accumulation of its own mRNA.<ref>PMID:2065661</ref> [[http://www.uniprot.org/uniprot/RL5_YEAST RL5_YEAST]] Binds 5S RNA and is required for 60S subunit assembly. [[http://www.uniprot.org/uniprot/RLA0_YEAST RLA0_YEAST]] Ribosomal protein P0 is the functional equivalent of E.coli protein L10. | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == |
Revision as of 16:15, 1 September 2015
Cryo-EM Structure of the 60S Ribosomal Subunit in Complex with Arx1 and Rei1Cryo-EM Structure of the 60S Ribosomal Subunit in Complex with Arx1 and Rei1
Structural highlights
Warning: this is a large structure, and loading might take a long time or not happen at all. Function[RL25_YEAST] This protein binds to a specific region on the 26S rRNA. [RL11B_YEAST] Binds to 5S ribosomal RNA. [RL401_YEAST] Ubiquitin: exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-6-linked may be involved in DNA repair; Lys-11-linked is involved in ERAD (endoplasmic reticulum-associated degradation) and in cell-cycle regulation; Lys-29-linked is involved in lysosomal degradation; Lys-33-linked is involved in kinase modification; Lys-48-linked is involved in protein degradation via the proteasome; Lys-63-linked is involved in endocytosis, and DNA-damage responses. Linear polymer chains formed via attachment by the initiator Met lead to cell signaling. Ubiquitin is usually conjugated to Lys residues of target proteins, however, in rare cases, conjugation to Cys or Ser residues has been observed. When polyubiquitin is free (unanchored-polyubiquitin), it also has distinct roles, such as in activation of protein kinases, and in signaling (By similarity).[1] 60S ribosomal protein L40: component of the 60S subunit of the ribosome. Ribosomal protein L40 is essential for translation of a subset of cellular transcripts, including stress response transcripts, such as DDR2.[2] [RL37A_YEAST] Binds to the 23S rRNA (By similarity). [RL4A_YEAST] Participates in the regulation of the accumulation of its own mRNA.[3] [RL5_YEAST] Binds 5S RNA and is required for 60S subunit assembly. [RLA0_YEAST] Ribosomal protein P0 is the functional equivalent of E.coli protein L10. Publication Abstract from PubMedEukaryotic ribosome biogenesis requires many protein factors that facilitate the assembly, nuclear export and final maturation of 40S and 60S particles. We have biochemically characterized ribosomal complexes of the yeast 60S-biogenesis factor Arx1 and late-maturation factors Rei1 and Jjj1 and determined their cryo-EM structures. Arx1 was visualized bound to the 60S subunit together with Rei1, at 8.1-A resolution, to reveal the molecular details of Arx1 binding whereby Arx1 arrests the eukaryotic-specific rRNA expansion segment 27 near the polypeptide tunnel exit. Rei1 and Jjj1, which have been implicated in Arx1 recycling, bind in the vicinity of Arx1 and form a network of interactions. We suggest that, in addition to the role of Arx1 during pre-60S nuclear export, the binding of Arx1 conformationally locks the pre-60S subunit and inhibits the premature association of nascent chain-processing factors to the polypeptide tunnel exit. Cryo-EM structures of Arx1 and maturation factors Rei1 and Jjj1 bound to the 60S ribosomal subunit.,Greber BJ, Boehringer D, Montellese C, Ban N Nat Struct Mol Biol. 2012 Nov 11. doi: 10.1038/nsmb.2425. PMID:23142985[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|