2n4f: Difference between revisions
No edit summary |
No edit summary |
||
Line 6: | Line 6: | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2n4f FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2n4f OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2n4f RCSB], [http://www.ebi.ac.uk/pdbsum/2n4f PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2n4f FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2n4f OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2n4f RCSB], [http://www.ebi.ac.uk/pdbsum/2n4f PDBsum]</span></td></tr> | ||
</table> | </table> | ||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Accurate determination of protein structure by NMR spectroscopy is challenging for larger proteins, for which experimental data are often incomplete and ambiguous. Evolutionary sequence information together with advances in maximum entropy statistical methods provide a rich complementary source of structural constraints. We have developed a hybrid approach (evolutionary coupling-NMR spectroscopy; EC-NMR) combining sparse NMR data with evolutionary residue-residue couplings and demonstrate accurate structure determination for several proteins 6-41 kDa in size. | |||
Protein structure determination by combining sparse NMR data with evolutionary couplings.,Tang Y, Huang YJ, Hopf TA, Sander C, Marks DS, Montelione GT Nat Methods. 2015 Jun 29. doi: 10.1038/nmeth.3455. PMID:26121406<ref>PMID:26121406</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
== References == | |||
<references/> | |||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Revision as of 10:39, 26 August 2015
EC-NMR Structure of Arabidopsis thaliana At2g32350 Determined by Combining Evolutionary Couplings (EC) and Sparse NMR Data. Northeast Structural Genomics Consortium target AR3433AEC-NMR Structure of Arabidopsis thaliana At2g32350 Determined by Combining Evolutionary Couplings (EC) and Sparse NMR Data. Northeast Structural Genomics Consortium target AR3433A
Structural highlights
Publication Abstract from PubMedAccurate determination of protein structure by NMR spectroscopy is challenging for larger proteins, for which experimental data are often incomplete and ambiguous. Evolutionary sequence information together with advances in maximum entropy statistical methods provide a rich complementary source of structural constraints. We have developed a hybrid approach (evolutionary coupling-NMR spectroscopy; EC-NMR) combining sparse NMR data with evolutionary residue-residue couplings and demonstrate accurate structure determination for several proteins 6-41 kDa in size. Protein structure determination by combining sparse NMR data with evolutionary couplings.,Tang Y, Huang YJ, Hopf TA, Sander C, Marks DS, Montelione GT Nat Methods. 2015 Jun 29. doi: 10.1038/nmeth.3455. PMID:26121406[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|