4h3b: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 2: Line 2:
<StructureSection load='4h3b' size='340' side='right' caption='[[4h3b]], [[Resolution|resolution]] 2.08&Aring;' scene=''>
<StructureSection load='4h3b' size='340' side='right' caption='[[4h3b]], [[Resolution|resolution]] 2.08&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[4h3b]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4H3B OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4H3B FirstGlance]. <br>
<table><tr><td colspan='2'>[[4h3b]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4H3B OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4H3B FirstGlance]. <br>
</td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4h36|4h36]], [[4h39|4h39]]</td></tr>
</td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4h36|4h36]], [[4h39|4h39]]</td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">MAPK10, JNK3, JNK3A, PRKM10, SAPK1B ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens])</td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">MAPK10, JNK3, JNK3A, PRKM10, SAPK1B ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Mitogen-activated_protein_kinase Mitogen-activated protein kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.11.24 2.7.11.24] </span></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Mitogen-activated_protein_kinase Mitogen-activated protein kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.11.24 2.7.11.24] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4h3b FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4h3b OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4h3b RCSB], [http://www.ebi.ac.uk/pdbsum/4h3b PDBsum]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4h3b FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4h3b OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4h3b RCSB], [http://www.ebi.ac.uk/pdbsum/4h3b PDBsum]</span></td></tr>
Line 11: Line 11:
[[http://www.uniprot.org/uniprot/MK10_HUMAN MK10_HUMAN]] Defects in MAPK10 are a cause of epileptic encephalopathy Lennox-Gastaut type (EELG) [MIM:[http://omim.org/entry/606369 606369]]. Epileptic encephalopathies of the Lennox-Gastaut group are childhood epileptic disorders characterized by severe psychomotor delay and seizures. Note=A chromosomal aberration involving MAPK10 has been found in a single patient. Translocation t(Y;4)(q11.2;q21) which causes MAPK10 truncation.  
[[http://www.uniprot.org/uniprot/MK10_HUMAN MK10_HUMAN]] Defects in MAPK10 are a cause of epileptic encephalopathy Lennox-Gastaut type (EELG) [MIM:[http://omim.org/entry/606369 606369]]. Epileptic encephalopathies of the Lennox-Gastaut group are childhood epileptic disorders characterized by severe psychomotor delay and seizures. Note=A chromosomal aberration involving MAPK10 has been found in a single patient. Translocation t(Y;4)(q11.2;q21) which causes MAPK10 truncation.  
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/MK10_HUMAN MK10_HUMAN]] Serine/threonine-protein kinase involved in various processes such as neuronal proliferation, differentiation, migration and programmed cell death. Extracellular stimuli such as proinflammatory cytokines or physical stress stimulate the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway. In this cascade, two dual specificity kinases MAP2K4/MKK4 and MAP2K7/MKK7 phosphorylate and activate MAPK10/JNK3. In turn, MAPK10/JNK3 phosphorylates a number of transcription factors, primarily components of AP-1 such as JUN and ATF2 and thus regulates AP-1 transcriptional activity. Plays regulatory roles in the signaling pathways during neuronal apoptosis. Phosphorylates the neuronal microtubule regulator STMN2. Acts in the regulation of the beta-amyloid precursor protein/APP signaling during neuronal differentiation by phosphorylating APP. Participates also in neurite growth in spiral ganglion neurons.<ref>PMID:11718727</ref>   
[[http://www.uniprot.org/uniprot/MK10_HUMAN MK10_HUMAN]] Serine/threonine-protein kinase involved in various processes such as neuronal proliferation, differentiation, migration and programmed cell death. Extracellular stimuli such as proinflammatory cytokines or physical stress stimulate the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway. In this cascade, two dual specificity kinases MAP2K4/MKK4 and MAP2K7/MKK7 phosphorylate and activate MAPK10/JNK3. In turn, MAPK10/JNK3 phosphorylates a number of transcription factors, primarily components of AP-1 such as JUN and ATF2 and thus regulates AP-1 transcriptional activity. Plays regulatory roles in the signaling pathways during neuronal apoptosis. Phosphorylates the neuronal microtubule regulator STMN2. Acts in the regulation of the beta-amyloid precursor protein/APP signaling during neuronal differentiation by phosphorylating APP. Participates also in neurite growth in spiral ganglion neurons.<ref>PMID:11718727</ref>  [[http://www.uniprot.org/uniprot/3BP5_HUMAN 3BP5_HUMAN]] Inhibits the auto- and transphosphorylation activity of BTK. Plays a negative regulatory role in BTK-related cytoplasmic signaling in B-cells. May be involved in BCR-induced apoptotic cell death.<ref>PMID:10339589</ref> <ref>PMID:9571151</ref>   
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
Line 27: Line 27:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Human]]
[[Category: Mitogen-activated protein kinase]]
[[Category: Mitogen-activated protein kinase]]
[[Category: Cherry, L]]
[[Category: Cherry, L]]

Revision as of 11:59, 17 June 2015

Crystal Structure of JNK3 in Complex with SAB PeptideCrystal Structure of JNK3 in Complex with SAB Peptide

Structural highlights

4h3b is a 4 chain structure with sequence from Human. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Gene:MAPK10, JNK3, JNK3A, PRKM10, SAPK1B (HUMAN)
Activity:Mitogen-activated protein kinase, with EC number 2.7.11.24
Resources:FirstGlance, OCA, RCSB, PDBsum

Disease

[MK10_HUMAN] Defects in MAPK10 are a cause of epileptic encephalopathy Lennox-Gastaut type (EELG) [MIM:606369]. Epileptic encephalopathies of the Lennox-Gastaut group are childhood epileptic disorders characterized by severe psychomotor delay and seizures. Note=A chromosomal aberration involving MAPK10 has been found in a single patient. Translocation t(Y;4)(q11.2;q21) which causes MAPK10 truncation.

Function

[MK10_HUMAN] Serine/threonine-protein kinase involved in various processes such as neuronal proliferation, differentiation, migration and programmed cell death. Extracellular stimuli such as proinflammatory cytokines or physical stress stimulate the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway. In this cascade, two dual specificity kinases MAP2K4/MKK4 and MAP2K7/MKK7 phosphorylate and activate MAPK10/JNK3. In turn, MAPK10/JNK3 phosphorylates a number of transcription factors, primarily components of AP-1 such as JUN and ATF2 and thus regulates AP-1 transcriptional activity. Plays regulatory roles in the signaling pathways during neuronal apoptosis. Phosphorylates the neuronal microtubule regulator STMN2. Acts in the regulation of the beta-amyloid precursor protein/APP signaling during neuronal differentiation by phosphorylating APP. Participates also in neurite growth in spiral ganglion neurons.[1] [3BP5_HUMAN] Inhibits the auto- and transphosphorylation activity of BTK. Plays a negative regulatory role in BTK-related cytoplasmic signaling in B-cells. May be involved in BCR-induced apoptotic cell death.[2] [3]

Publication Abstract from PubMed

c-Jun N-terminal (JNK) family kinases have a common peptide-docking site used by upstream activating kinases, substrates, scaffold proteins, and phosphatases, where the ensemble of bound proteins determines signaling output. Although there are many JNK structures, little is known about mechanisms of allosteric regulation between the catalytic and peptide-binding sites, and the activation loop, whose phosphorylation is required for catalytic activity. Here, we compare three structures of unliganded JNK3 bound to different peptides. These were compared as a class to structures that differ in binding of peptide, small molecule ligand, or conformation of the kinase activation loop. Peptide binding induced an inhibitory interlobe conformer that was reversed by alterations in the activation loop. Structure class analysis revealed the subtle structural mechanisms for allosteric signaling between the peptide-binding site and activation loop. Biochemical data from isothermal calorimetry, fluorescence energy transfer, and enzyme inhibition demonstrated affinity differences among the three peptides that were consistent with structural observations.

Structural Mechanisms of Allostery and Autoinhibition in JNK Family Kinases.,Laughlin JD, Nwachukwu JC, Figuera-Losada M, Cherry L, Nettles KW, Lograsso PV Structure. 2012 Nov 6. pii: S0969-2126(12)00374-7. doi:, 10.1016/j.str.2012.09.021. PMID:23142346[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Neidhart S, Antonsson B, Gillieron C, Vilbois F, Grenningloh G, Arkinstall S. c-Jun N-terminal kinase-3 (JNK3)/stress-activated protein kinase-beta (SAPKbeta) binds and phosphorylates the neuronal microtubule regulator SCG10. FEBS Lett. 2001 Nov 16;508(2):259-64. PMID:11718727
  2. Yamadori T, Baba Y, Matsushita M, Hashimoto S, Kurosaki M, Kurosaki T, Kishimoto T, Tsukada S. Bruton's tyrosine kinase activity is negatively regulated by Sab, the Btk-SH3 domain-binding protein. Proc Natl Acad Sci U S A. 1999 May 25;96(11):6341-6. PMID:10339589
  3. Matsushita M, Yamadori T, Kato S, Takemoto Y, Inazawa J, Baba Y, Hashimoto S, Sekine S, Arai S, Kunikata T, Kurimoto M, Kishimoto T, Tsukada S. Identification and characterization of a novel SH3-domain binding protein, Sab, which preferentially associates with Bruton's tyrosine kinase (BtK). Biochem Biophys Res Commun. 1998 Apr 17;245(2):337-43. PMID:9571151 doi:http://dx.doi.org/10.1006/bbrc.1998.8420
  4. Laughlin JD, Nwachukwu JC, Figuera-Losada M, Cherry L, Nettles KW, Lograsso PV. Structural Mechanisms of Allostery and Autoinhibition in JNK Family Kinases. Structure. 2012 Nov 6. pii: S0969-2126(12)00374-7. doi:, 10.1016/j.str.2012.09.021. PMID:23142346 doi:http://dx.doi.org/10.1016/j.str.2012.09.021

4h3b, resolution 2.08Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA