5ai4: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
'''Unreleased structure'''
==ligand complex structure of soluble epoxide hydrolase==
<StructureSection load='5ai4' size='340' side='right' caption='[[5ai4]], [[Resolution|resolution]] 1.93&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[5ai4]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5AI4 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5AI4 FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=4VY:2-[(5-BROMO-2-PYRIDYL)-METHYL-AMINO]ETHANOL'>4VY</scene>, <scene name='pdbligand=DMS:DIMETHYL+SULFOXIDE'>DMS</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5ahx|5ahx]], [[5ai0|5ai0]], [[5ai5|5ai5]], [[5ai6|5ai6]], [[5ai8|5ai8]], [[5ai9|5ai9]], [[5aia|5aia]], [[5aib|5aib]], [[5aic|5aic]]</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5ai4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5ai4 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=5ai4 RCSB], [http://www.ebi.ac.uk/pdbsum/5ai4 PDBsum]</span></td></tr>
</table>
== Function ==
[[http://www.uniprot.org/uniprot/HYES_HUMAN HYES_HUMAN]] Bifunctional enzyme. The C-terminal domain has epoxide hydrolase activity and acts on epoxides (alkene oxides, oxiranes) and arene oxides. Plays a role in xenobiotic metabolism by degrading potentially toxic epoxides. Also determines steady-state levels of physiological mediators. The N-terminal domain has lipid phosphatase activity, with the highest activity towards threo-9,10-phosphonooxy-hydroxy-octadecanoic acid, followed by erythro-9,10-phosphonooxy-hydroxy-octadecanoic acid, 12-phosphonooxy-octadec-9Z-enoic acid, 12-phosphonooxy-octadec-9E-enoic acid, and p-nitrophenyl phospate.<ref>PMID:12574508</ref> <ref>PMID:12574510</ref> 
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Fragment-based drug discovery relies upon structural information for efficient compound progression, yet it is often challenging to generate structures with bound fragments. A summary of recent literature reveals that a wide repertoire of experimental procedures is employed to generate ligand-bound crystal structures successfully. We share in-house experience from setting up and executing fragment crystallography in a project that resulted in 55 complex structures. The ligands span five orders of magnitude in affinity and the resulting structures are made available to be of use, for example, for development of computational methods. Analysis of the results revealed that ligand properties such as potency, ligand efficiency (LE) and, to some degree, clogP influence the success of complex structure generation.


The entry 5ai4 is ON HOLD  until Paper Publication
Successful generation of structural information for fragment-based drug discovery.,Oster L, Tapani S, Xue Y, Kack H Drug Discov Today. 2015 Apr 28. pii: S1359-6446(15)00154-3. doi:, 10.1016/j.drudis.2015.04.005. PMID:25931264<ref>PMID:25931264</ref>


Authors: Oster, L., Tapani, S., Xue, Y., Kack, H.
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
</div>
Description: ligand complex structure of soluble epoxide hydrolase
== References ==
[[Category: Unreleased Structures]]
<references/>
__TOC__
</StructureSection>
[[Category: Kack, H]]
[[Category: Kack, H]]
[[Category: Oster, L]]
[[Category: Tapani, S]]
[[Category: Tapani, S]]
[[Category: Oster, L]]
[[Category: Xue, Y]]
[[Category: Xue, Y]]
[[Category: Hydrolase]]

Revision as of 15:14, 13 May 2015

ligand complex structure of soluble epoxide hydrolaseligand complex structure of soluble epoxide hydrolase

Structural highlights

5ai4 is a 1 chain structure. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, ,
Resources:FirstGlance, OCA, RCSB, PDBsum

Function

[HYES_HUMAN] Bifunctional enzyme. The C-terminal domain has epoxide hydrolase activity and acts on epoxides (alkene oxides, oxiranes) and arene oxides. Plays a role in xenobiotic metabolism by degrading potentially toxic epoxides. Also determines steady-state levels of physiological mediators. The N-terminal domain has lipid phosphatase activity, with the highest activity towards threo-9,10-phosphonooxy-hydroxy-octadecanoic acid, followed by erythro-9,10-phosphonooxy-hydroxy-octadecanoic acid, 12-phosphonooxy-octadec-9Z-enoic acid, 12-phosphonooxy-octadec-9E-enoic acid, and p-nitrophenyl phospate.[1] [2]

Publication Abstract from PubMed

Fragment-based drug discovery relies upon structural information for efficient compound progression, yet it is often challenging to generate structures with bound fragments. A summary of recent literature reveals that a wide repertoire of experimental procedures is employed to generate ligand-bound crystal structures successfully. We share in-house experience from setting up and executing fragment crystallography in a project that resulted in 55 complex structures. The ligands span five orders of magnitude in affinity and the resulting structures are made available to be of use, for example, for development of computational methods. Analysis of the results revealed that ligand properties such as potency, ligand efficiency (LE) and, to some degree, clogP influence the success of complex structure generation.

Successful generation of structural information for fragment-based drug discovery.,Oster L, Tapani S, Xue Y, Kack H Drug Discov Today. 2015 Apr 28. pii: S1359-6446(15)00154-3. doi:, 10.1016/j.drudis.2015.04.005. PMID:25931264[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Cronin A, Mowbray S, Durk H, Homburg S, Fleming I, Fisslthaler B, Oesch F, Arand M. The N-terminal domain of mammalian soluble epoxide hydrolase is a phosphatase. Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1552-7. Epub 2003 Feb 6. PMID:12574508 doi:10.1073/pnas.0437829100
  2. Newman JW, Morisseau C, Harris TR, Hammock BD. The soluble epoxide hydrolase encoded by EPXH2 is a bifunctional enzyme with novel lipid phosphate phosphatase activity. Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1558-63. Epub 2003 Feb 6. PMID:12574510 doi:10.1073/pnas.0437724100
  3. Oster L, Tapani S, Xue Y, Kack H. Successful generation of structural information for fragment-based drug discovery. Drug Discov Today. 2015 Apr 28. pii: S1359-6446(15)00154-3. doi:, 10.1016/j.drudis.2015.04.005. PMID:25931264 doi:http://dx.doi.org/10.1016/j.drudis.2015.04.005

5ai4, resolution 1.93Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA