Recombinase A: Difference between revisions

No edit summary
No edit summary
Line 12: Line 12:


== Binding Sites on RecA ==
== Binding Sites on RecA ==
As RecA has many different functions, it also has several different binding sites for DNA, ATP, the LexA repressor, the λ repressor, as well as other RecA protein monomers to form a variety of oligomers.<ref name=Roca> Roca, A. I.; Cox, M. M. RecA Protein: Structure, Function, and Role in Recombinational DNA Repair. Prog. Nucleic Acid Res. Mol. Biol. 1997, 56, 129-223. DOI: 10.1016/S0079-6603(08)61005-3 </ref> <ref name=Story> Story, R. M.; Weber, I. T.; Steitz, T. A. The structure of the E. coli recA protein monomer and polymer. Nature (London) 1992, 355, 318-325. DOI: 10.1038/355318a0 </ref> <ref name=Walker> Walker, J. E.; Saraste, M.; Runswick, M. J. Gay, N. J. Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982, 1, 945-951. PMCID: PMC553140 </ref>  There are six RecA proteins per turn of the helix, and each individual monomer is capable of binding three base pairs of the extended conformation of DNA.<ref name=Cox> Cox, M. M. Motoring along with the bacterial RecA protein. Nat. Rev. Mol. Cell Biol. 2007, 8, 127-138. DOI: 10.1038/nrm2099 </ref>  This filament is not the only oligomer of RecA that exists in solution, however. Sattin and Goh have reported a variety of RecA structures in buffer, such as monomers, hexamers, rods/fibrils, protofibrils, and other small aggregates.<ref name=Sattin> Sattin, B. D.; Goh, M. C. Novel polymorphism of recA fibrils revealed by Atomic Force Microscopy. J. Biol. Phys. 2006, 32, 153-168. DOI: 10.1007/s10867-006-9010-3 </ref> Moreover, the type and amount of these different aggregation states is dynamic. Brenner and Zlotnick reported that the presence of monovalent salts changed the distribution of RecA aggregation states and that higher protein concentration tended to correspond to more aggregated structures.<ref name=Sattin> Sattin, B. D.; Goh, M. C. Novel polymorphism of recA fibrils revealed by Atomic Force Microscopy. J. Biol. Phys. 2006, 32, 153-168. DOI: 10.1007/s10867-006-9010-3 </ref>'''K10'''  ATP hydrolysis occurs in the region of a loop consisting of amino acids 66-73 of the protein. This loop, which corresponds to the Walker A box motif, has the sequence GPESSGKT.<ref name=Sattin> Sattin, B. D.; Goh, M. C. Novel polymorphism of recA fibrils revealed by Atomic Force Microscopy. J. Biol. Phys. 2006, 32, 153-168. DOI: 10.1007/s10867-006-9010-3 </ref>'''K6'''<ref name=Story> Story, R. M.; Weber, I. T.; Steitz, T. A. The structure of the E. coli recA protein monomer and polymer. Nature (London) 1992, 355, 318-325. DOI: 10.1038/355318a0 </ref> This sequence corresponds to a variation known as the phosphate binding loop, which has a sequence [G/A]XXXXGK[T/S] found in many nucleoside triphosphate (NTP)-binding proteins.<ref name=Story> Story, R. M.; Weber, I. T.; Steitz, T. A. The structure of the E. coli recA protein monomer and polymer. Nature (London) 1992, 355, 318-325. DOI: 10.1038/355318a0 </ref> <ref name=Sattin> Sattin, B. D.; Goh, M. C. Novel polymorphism of recA fibrils revealed by Atomic Force Microscopy. J. Biol. Phys. 2006, 32, 153-168. DOI: 10.1007/s10867-006-9010-3 </ref>'''K9''' Several of the residues in this phosphate binding loop can be seen interacting with the β and γ phosphates of ATP in the ATP-binding site proposed by Story and Steitz.<ref name=Story> Story, R. M.; Weber, I. T.; Steitz, T. A. The structure of the E. coli recA protein monomer and polymer. Nature (London) 1992, 355, 318-325. DOI: 10.1038/355318a0 </ref> The binding of various ligands to RecA has been shown to change the pitch, the “distance covered by each turn of the helix,” of the protein filament.<ref name=Story> Story, R. M.; Weber, I. T.; Steitz, T. A. The structure of the E. coli recA protein monomer and polymer. Nature (London) 1992, 355, 318-325. DOI: 10.1038/355318a0 </ref>'''k13''' RecA in the absence of any cofactor is in a “closed” conformation with a helical pitch of 7 nm (DNA binding to the RecA does not alter the pitch significantly). RecA bound to ATP increases the pitch to 9 nm.<ref name=Story> Story, R. M.; Weber, I. T.; Steitz, T. A. The structure of the E. coli recA protein monomer and polymer. Nature (London) 1992, 355, 318-325. DOI: 10.1038/355318a0 </ref>'''k14''' This RecA-ATP structure is marked by a higher affinity for DNA.<ref name=Roca> Roca, A. I.; Cox, M. M. RecA Protein: Structure, Function, and Role in Recombinational DNA Repair. Prog. Nucleic Acid Res. Mol. Biol. 1997, 56, 129-223. DOI: 10.1016/S0079-6603(08)61005-3 </ref> <ref name=Roca> Roca, A. I.; Cox, M. M. RecA Protein: Structure, Function, and Role in Recombinational DNA Repair. Prog. Nucleic Acid Res. Mol. Biol. 1997, 56, 129-223. DOI: 10.1016/S0079-6603(08)61005-3 </ref>'''k15''' However, the binding of ADP to RecA only raises the pitch to 8.2 nm,<ref name=Roca> Roca, A. I.; Cox, M. M. RecA Protein: Structure, Function, and Role in Recombinational DNA Repair. Prog. Nucleic Acid Res. Mol. Biol. 1997, 56, 129-223. DOI: 10.1016/S0079-6603(08)61005-3 </ref>'''k14''' the conformation of which is known to have a lower affinity for DNA.<ref name=Roca> Roca, A. I.; Cox, M. M. RecA Protein: Structure, Function, and Role in Recombinational DNA Repair. Prog. Nucleic Acid Res. Mol. Biol. 1997, 56, 129-223. DOI: 10.1016/S0079-6603(08)61005-3 </ref> <ref name=Roca> Roca, A. I.; Cox, M. M. RecA Protein: Structure, Function, and Role in Recombinational DNA Repair. Prog. Nucleic Acid Res. Mol. Biol. 1997, 56, 129-223. DOI: 10.1016/S0079-6603(08)61005-3 </ref>'''k15'''  
As RecA has many different functions, it also has several different binding sites for DNA, ATP, the LexA repressor, the λ repressor, as well as other RecA protein monomers to form a variety of oligomers.<ref name=Roca> Roca, A. I.; Cox, M. M. RecA Protein: Structure, Function, and Role in Recombinational DNA Repair. Prog. Nucleic Acid Res. Mol. Biol. 1997, 56, 129-223. DOI: 10.1016/S0079-6603(08)61005-3 </ref> <ref name=Story> Story, R. M.; Weber, I. T.; Steitz, T. A. The structure of the E. coli recA protein monomer and polymer. Nature (London) 1992, 355, 318-325. DOI: 10.1038/355318a0 </ref> <ref name=Walker> Walker, J. E.; Saraste, M.; Runswick, M. J. Gay, N. J. Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982, 1, 945-951. PMCID: PMC553140 </ref>  There are six RecA proteins per turn of the helix, and each individual monomer is capable of binding three base pairs of the extended conformation of DNA.<ref name=Cox> Cox, M. M. Motoring along with the bacterial RecA protein. Nat. Rev. Mol. Cell Biol. 2007, 8, 127-138. DOI: 10.1038/nrm2099 </ref>  This filament is not the only oligomer of RecA that exists in solution, however. Sattin and Goh have reported a variety of RecA structures in buffer, such as monomers, hexamers, rods/fibrils, protofibrils, and other small aggregates.<ref name=Sattin> Sattin, B. D.; Goh, M. C. Novel polymorphism of recA fibrils revealed by Atomic Force Microscopy. J. Biol. Phys. 2006, 32, 153-168. DOI: 10.1007/s10867-006-9010-3 </ref> Moreover, the type and amount of these different aggregation states is dynamic. Brenner and Zlotnick reported that the presence of monovalent salts changed the distribution of RecA aggregation states and that higher protein concentration tended to correspond to more aggregated structures.<ref name=Sattin> Sattin, B. D.; Goh, M. C. Novel polymorphism of recA fibrils revealed by Atomic Force Microscopy. J. Biol. Phys. 2006, 32, 153-168. DOI: 10.1007/s10867-006-9010-3 </ref>'''K10'''  ATP hydrolysis occurs in the region of a loop consisting of amino acids 66-73 of the protein. This loop, which corresponds to the Walker A box motif, has the sequence GPESSGKT.<ref name=Roca> Roca, A. I.; Cox, M. M. RecA Protein: Structure, Function, and Role in Recombinational DNA Repair. Prog. Nucleic Acid Res. Mol. Biol. 1997, 56, 129-223. DOI: 10.1016/S0079-6603(08)61005-3 </ref> <ref name=Story> Story, R. M.; Weber, I. T.; Steitz, T. A. The structure of the E. coli recA protein monomer and polymer. Nature (London) 1992, 355, 318-325. DOI: 10.1038/355318a0 </ref> This sequence corresponds to a variation known as the phosphate binding loop, which has a sequence [G/A]XXXXGK[T/S] found in many nucleoside triphosphate (NTP)-binding proteins.<ref name=Story> Story, R. M.; Weber, I. T.; Steitz, T. A. The structure of the E. coli recA protein monomer and polymer. Nature (London) 1992, 355, 318-325. DOI: 10.1038/355318a0 </ref> <ref name=Sattin> Sattin, B. D.; Goh, M. C. Novel polymorphism of recA fibrils revealed by Atomic Force Microscopy. J. Biol. Phys. 2006, 32, 153-168. DOI: 10.1007/s10867-006-9010-3 </ref>'''K9''' Several of the residues in this phosphate binding loop can be seen interacting with the β and γ phosphates of ATP in the ATP-binding site proposed by Story and Steitz.<ref name=Story> Story, R. M.; Weber, I. T.; Steitz, T. A. The structure of the E. coli recA protein monomer and polymer. Nature (London) 1992, 355, 318-325. DOI: 10.1038/355318a0 </ref> The binding of various ligands to RecA has been shown to change the pitch, the “distance covered by each turn of the helix,” of the protein filament.<ref name=Story> Story, R. M.; Weber, I. T.; Steitz, T. A. The structure of the E. coli recA protein monomer and polymer. Nature (London) 1992, 355, 318-325. DOI: 10.1038/355318a0 </ref>'''k13''' RecA in the absence of any cofactor is in a “closed” conformation with a helical pitch of 7 nm (DNA binding to the RecA does not alter the pitch significantly). RecA bound to ATP increases the pitch to 9 nm.<ref name=Story> Story, R. M.; Weber, I. T.; Steitz, T. A. The structure of the E. coli recA protein monomer and polymer. Nature (London) 1992, 355, 318-325. DOI: 10.1038/355318a0 </ref>'''k14''' This RecA-ATP structure is marked by a higher affinity for DNA.<ref name=Roca> Roca, A. I.; Cox, M. M. RecA Protein: Structure, Function, and Role in Recombinational DNA Repair. Prog. Nucleic Acid Res. Mol. Biol. 1997, 56, 129-223. DOI: 10.1016/S0079-6603(08)61005-3 </ref> <ref name=Roca> Roca, A. I.; Cox, M. M. RecA Protein: Structure, Function, and Role in Recombinational DNA Repair. Prog. Nucleic Acid Res. Mol. Biol. 1997, 56, 129-223. DOI: 10.1016/S0079-6603(08)61005-3 </ref>'''k15''' However, the binding of ADP to RecA only raises the pitch to 8.2 nm,<ref name=Roca> Roca, A. I.; Cox, M. M. RecA Protein: Structure, Function, and Role in Recombinational DNA Repair. Prog. Nucleic Acid Res. Mol. Biol. 1997, 56, 129-223. DOI: 10.1016/S0079-6603(08)61005-3 </ref>'''k14''' the conformation of which is known to have a lower affinity for DNA.<ref name=Roca> Roca, A. I.; Cox, M. M. RecA Protein: Structure, Function, and Role in Recombinational DNA Repair. Prog. Nucleic Acid Res. Mol. Biol. 1997, 56, 129-223. DOI: 10.1016/S0079-6603(08)61005-3 </ref> <ref name=Roca> Roca, A. I.; Cox, M. M. RecA Protein: Structure, Function, and Role in Recombinational DNA Repair. Prog. Nucleic Acid Res. Mol. Biol. 1997, 56, 129-223. DOI: 10.1016/S0079-6603(08)61005-3 </ref>'''k15'''  


== RecA and Hofmeister Salts ==
== RecA and Hofmeister Salts ==

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

Alexander Berchansky, Michal Harel, Jaime Prilusky, Taylor Light, Joel L. Sussman