5p21: Difference between revisions

No edit summary
No edit summary
Line 1: Line 1:
{{STRUCTURE_5p21|  PDB=5p21  |  SCENE=  }}
==REFINED CRYSTAL STRUCTURE OF THE TRIPHOSPHATE CONFORMATION OF H-RAS P21 AT 1.35 ANGSTROMS RESOLUTION: IMPLICATIONS FOR THE MECHANISM OF GTP HYDROLYSIS==
===REFINED CRYSTAL STRUCTURE OF THE TRIPHOSPHATE CONFORMATION OF H-RAS P21 AT 1.35 ANGSTROMS RESOLUTION: IMPLICATIONS FOR THE MECHANISM OF GTP HYDROLYSIS===
<StructureSection load='5p21' size='340' side='right' caption='[[5p21]], [[Resolution|resolution]] 1.35&Aring;' scene=''>
{{ABSTRACT_PUBMED_2196171}}
== Structural highlights ==
<table><tr><td colspan='2'>[[5p21]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. The April 2012 RCSB PDB [http://pdb.rcsb.org/pdb/static.do?p=education_discussion/molecule_of_the_month/index.html Molecule of the Month] feature on ''Ras Protein''  by David Goodsell is [http://dx.doi.org/10.2210/rcsb_pdb/mom_2012_4 10.2210/rcsb_pdb/mom_2012_4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5P21 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5P21 FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GNP:PHOSPHOAMINOPHOSPHONIC+ACID-GUANYLATE+ESTER'>GNP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5p21 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5p21 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=5p21 RCSB], [http://www.ebi.ac.uk/pdbsum/5p21 PDBsum]</span></td></tr>
</table>
== Disease ==
[[http://www.uniprot.org/uniprot/RASH_HUMAN RASH_HUMAN]] Defects in HRAS are the cause of faciocutaneoskeletal syndrome (FCSS) [MIM:[http://omim.org/entry/218040 218040]]. A rare condition characterized by prenatally increased growth, postnatal growth deficiency, mental retardation, distinctive facial appearance, cardiovascular abnormalities (typically pulmonic stenosis, hypertrophic cardiomyopathy and/or atrial tachycardia), tumor predisposition, skin and musculoskeletal abnormalities.<ref>PMID:16170316</ref> <ref>PMID:16329078</ref> <ref>PMID:16443854</ref> <ref>PMID:17054105</ref> <ref>PMID:18247425</ref> <ref>PMID:18039947</ref> <ref>PMID:19995790</ref>  Defects in HRAS are the cause of congenital myopathy with excess of muscle spindles (CMEMS) [MIM:[http://omim.org/entry/218040 218040]]. CMEMS is a variant of Costello syndrome.<ref>PMID:17412879</ref>  Defects in HRAS may be a cause of susceptibility to Hurthle cell thyroid carcinoma (HCTC) [MIM:[http://omim.org/entry/607464 607464]]. Hurthle cell thyroid carcinoma accounts for approximately 3% of all thyroid cancers. Although they are classified as variants of follicular neoplasms, they are more often multifocal and somewhat more aggressive and are less likely to take up iodine than are other follicular neoplasms.  Note=Mutations which change positions 12, 13 or 61 activate the potential of HRAS to transform cultured cells and are implicated in a variety of human tumors.  Defects in HRAS are a cause of susceptibility to bladder cancer (BLC) [MIM:[http://omim.org/entry/109800 109800]]. A malignancy originating in tissues of the urinary bladder. It often presents with multiple tumors appearing at different times and at different sites in the bladder. Most bladder cancers are transitional cell carcinomas. They begin in cells that normally make up the inner lining of the bladder. Other types of bladder cancer include squamous cell carcinoma (cancer that begins in thin, flat cells) and adenocarcinoma (cancer that begins in cells that make and release mucus and other fluids). Bladder cancer is a complex disorder with both genetic and environmental influences.  Note=Defects in HRAS are the cause of oral squamous cell carcinoma (OSCC).<ref>PMID:1459726</ref>  Defects in HRAS are the cause of Schimmelpenning-Feuerstein-Mims syndrome (SFM) [MIM:[http://omim.org/entry/163200 163200]]. A disease characterized by sebaceous nevi, often on the face, associated with variable ipsilateral abnormalities of the central nervous system, ocular anomalies, and skeletal defects. Many oral manifestations have been reported, not only including hypoplastic and malformed teeth, and mucosal papillomatosis, but also ankyloglossia, hemihyperplastic tongue, intraoral nevus, giant cell granuloma, ameloblastoma, bone cysts, follicular cysts, oligodontia, and odontodysplasia. Sebaceous nevi follow the lines of Blaschko and these can continue as linear intraoral lesions, as in mucosal papillomatosis.<ref>PMID:22683711</ref> 
== Function ==
[[http://www.uniprot.org/uniprot/RASH_HUMAN RASH_HUMAN]] Ras proteins bind GDP/GTP and possess intrinsic GTPase activity.<ref>PMID:14500341</ref> <ref>PMID:9020151</ref> <ref>PMID:12740440</ref> 
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/p2/5p21_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The crystal structure of the H-ras oncogene protein p21 complexed to the slowly hydrolysing GTP analogue GppNp has been determined at 1.35 A resolution. 211 water molecules have been built into the electron density. The structure has been refined to a final R-factor of 19.8% for all data between 6 A and 1.35 A. The binding sites of the nucleotide and the magnesium ion are revealed in high detail. For the stretch of amino acid residues 61-65, the temperature factors of backbone atoms are four times the average value of 16.1 A2 due to the multiple conformations. In one of these conformations, the side chain of Gln61 makes contact with a water molecule, which is perfectly placed to be the nucleophile attacking the gamma-phosphate of GTP. Based on this observation, we propose a mechanism for GTP hydrolysis involving mainly Gln61 and Glu63 as activating species for in-line attack of water. Nucleophilic displacement is facilitated by hydrogen bonds from residues Thr35, Gly60 and Lys16. A mechanism for rate enhancement by GAP is also proposed.


==Disease==
Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 A resolution: implications for the mechanism of GTP hydrolysis.,Pai EF, Krengel U, Petsko GA, Goody RS, Kabsch W, Wittinghofer A EMBO J. 1990 Aug;9(8):2351-9. PMID:2196171<ref>PMID:2196171</ref>
[[http://www.uniprot.org/uniprot/RASH_HUMAN RASH_HUMAN]] Defects in HRAS are the cause of faciocutaneoskeletal syndrome (FCSS) [MIM:[http://omim.org/entry/218040 218040]]. A rare condition characterized by prenatally increased growth, postnatal growth deficiency, mental retardation, distinctive facial appearance, cardiovascular abnormalities (typically pulmonic stenosis, hypertrophic cardiomyopathy and/or atrial tachycardia), tumor predisposition, skin and musculoskeletal abnormalities.<ref>PMID:16170316</ref><ref>PMID:16329078</ref><ref>PMID:16443854</ref><ref>PMID:17054105</ref><ref>PMID:18247425</ref><ref>PMID:18039947</ref><ref>PMID:19995790</ref>  Defects in HRAS are the cause of congenital myopathy with excess of muscle spindles (CMEMS) [MIM:[http://omim.org/entry/218040 218040]]. CMEMS is a variant of Costello syndrome.<ref>PMID:17412879</ref>  Defects in HRAS may be a cause of susceptibility to Hurthle cell thyroid carcinoma (HCTC) [MIM:[http://omim.org/entry/607464 607464]]. Hurthle cell thyroid carcinoma accounts for approximately 3% of all thyroid cancers. Although they are classified as variants of follicular neoplasms, they are more often multifocal and somewhat more aggressive and are less likely to take up iodine than are other follicular neoplasms.  Note=Mutations which change positions 12, 13 or 61 activate the potential of HRAS to transform cultured cells and are implicated in a variety of human tumors.  Defects in HRAS are a cause of susceptibility to bladder cancer (BLC) [MIM:[http://omim.org/entry/109800 109800]]. A malignancy originating in tissues of the urinary bladder. It often presents with multiple tumors appearing at different times and at different sites in the bladder. Most bladder cancers are transitional cell carcinomas. They begin in cells that normally make up the inner lining of the bladder. Other types of bladder cancer include squamous cell carcinoma (cancer that begins in thin, flat cells) and adenocarcinoma (cancer that begins in cells that make and release mucus and other fluids). Bladder cancer is a complex disorder with both genetic and environmental influences.  Note=Defects in HRAS are the cause of oral squamous cell carcinoma (OSCC).<ref>PMID:1459726</ref>  Defects in HRAS are the cause of Schimmelpenning-Feuerstein-Mims syndrome (SFM) [MIM:[http://omim.org/entry/163200 163200]]. A disease characterized by sebaceous nevi, often on the face, associated with variable ipsilateral abnormalities of the central nervous system, ocular anomalies, and skeletal defects. Many oral manifestations have been reported, not only including hypoplastic and malformed teeth, and mucosal papillomatosis, but also ankyloglossia, hemihyperplastic tongue, intraoral nevus, giant cell granuloma, ameloblastoma, bone cysts, follicular cysts, oligodontia, and odontodysplasia. Sebaceous nevi follow the lines of Blaschko and these can continue as linear intraoral lesions, as in mucosal papillomatosis.<ref>PMID:22683711</ref>  


==Function==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
[[http://www.uniprot.org/uniprot/RASH_HUMAN RASH_HUMAN]] Ras proteins bind GDP/GTP and possess intrinsic GTPase activity.<ref>PMID:14500341</ref><ref>PMID:9020151</ref><ref>PMID:12740440</ref>  
</div>
 
==About this Structure==
[[5p21]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. The April 2012 RCSB PDB [http://pdb.rcsb.org/pdb/static.do?p=education_discussion/molecule_of_the_month/index.html Molecule of the Month] feature on ''Ras Protein''  by David Goodsell is [http://dx.doi.org/10.2210/rcsb_pdb/mom_2012_4 10.2210/rcsb_pdb/mom_2012_4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5P21 OCA].


==See Also==
==See Also==
*[[GTPase HRas|GTPase HRas]]
*[[GTPase HRas|GTPase HRas]]
 
== References ==
==Reference==
<references/>
<ref group="xtra">PMID:002196171</ref><ref group="xtra">PMID:008985254</ref><ref group="xtra">PMID:009398520</ref><ref group="xtra">PMID:011604529</ref><ref group="xtra">PMID:016773572</ref><references group="xtra"/><references/>
__TOC__
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: RCSB PDB Molecule of the Month]]
[[Category: RCSB PDB Molecule of the Month]]
[[Category: Ras Protein]]
[[Category: Ras Protein]]
[[Category: Kabsch, W.]]
[[Category: Kabsch, W]]
[[Category: Pai, E F.]]
[[Category: Pai, E F]]
[[Category: Wittinghofer, A.]]
[[Category: Wittinghofer, A]]
[[Category: Oncogene protein]]
[[Category: Oncogene protein]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA