2hkd: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[2hkd]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Borrelia_burgdorferi Borrelia burgdorferi]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2HKD OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2HKD FirstGlance]. <br> | <table><tr><td colspan='2'>[[2hkd]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Borrelia_burgdorferi Borrelia burgdorferi]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2HKD OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2HKD FirstGlance]. <br> | ||
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=PG4:TETRAETHYLENE+GLYCOL'>PG4</scene>< | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=PG4:TETRAETHYLENE+GLYCOL'>PG4</scene></td></tr> | ||
<tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">ospA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=139 Borrelia burgdorferi])</td></tr> | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">ospA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=139 Borrelia burgdorferi])</td></tr> | ||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2hkd FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2hkd OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2hkd RCSB], [http://www.ebi.ac.uk/pdbsum/2hkd PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2hkd FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2hkd OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2hkd RCSB], [http://www.ebi.ac.uk/pdbsum/2hkd PDBsum]</span></td></tr> | ||
<table> | </table> | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 33: | Line 33: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Borrelia burgdorferi]] | [[Category: Borrelia burgdorferi]] | ||
[[Category: Koide, S | [[Category: Koide, S]] | ||
[[Category: Makabe, K | [[Category: Makabe, K]] | ||
[[Category: Terechko, V | [[Category: Terechko, V]] | ||
[[Category: Beta sheet]] | [[Category: Beta sheet]] | ||
[[Category: De novo protein]] | [[Category: De novo protein]] | ||
[[Category: Engineered protein]] | [[Category: Engineered protein]] |
Revision as of 11:23, 16 January 2015
The crystal structure of engineered OSPAThe crystal structure of engineered OSPA
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedAlthough the beta-rich self-assemblies are a major structural class for polypeptides and the focus of intense research, little is known about their atomic structures and dynamics due to their insoluble and noncrystalline nature. We developed a protein engineering strategy that captures a self-assembly segment in a water-soluble molecule. A predefined number of self-assembling peptide units are linked, and the beta-sheet ends are capped to prevent aggregation, which yields a mono-dispersed soluble protein. We tested this strategy by using Borrelia outer surface protein (OspA) whose single-layer beta-sheet located between two globular domains consists of two beta-hairpin units and thus can be considered as a prototype of self-assembly. We constructed self-assembly mimics of different sizes and determined their atomic structures using x-ray crystallography and NMR spectroscopy. Highly regular beta-sheet geometries were maintained in these structures, and peptide units had a nearly identical conformation, supporting the concept that a peptide in the regular beta-geometry is primed for self-assembly. However, we found small but significant differences in the relative orientation between adjacent peptide units in terms of beta-sheet twist and bend, suggesting their inherent flexibility. Modeling shows how this conformational diversity, when propagated over a large number of peptide units, can lead to a substantial degree of nanoscale polymorphism of self-assemblies. Atomic structures of peptide self-assembly mimics.,Makabe K, McElheny D, Tereshko V, Hilyard A, Gawlak G, Yan S, Koide A, Koide S Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17753-8. Epub 2006 Nov 8. PMID:17093048[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences |
|