4oge: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal structure of the Type II-C Cas9 enzyme from Actinomyces naeslundii== | |||
<StructureSection load='4oge' size='340' side='right' caption='[[4oge]], [[Resolution|resolution]] 2.20Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[4oge]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Actinomyces_naeslundii_'howell_279' Actinomyces naeslundii 'howell 279']. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4OGE OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4OGE FirstGlance]. <br> | |||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=SPD:SPERMIDINE'>SPD</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | |||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4ogc|4ogc]], [[4cmq|4cmq]], [[4cmp|4cmp]]</td></tr> | |||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">HMPREF1129_2620 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1115803 Actinomyces naeslundii 'Howell 279'])</td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4oge FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4oge OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4oge RCSB], [http://www.ebi.ac.uk/pdbsum/4oge PDBsum]</span></td></tr> | |||
</table> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Type II CRISPR-Cas systems use an RNA-guided DNA endonuclease, Cas9, to generate double-strand breaks in invasive DNA during an adaptive bacterial immune response. Cas9 has been harnessed as a powerful tool for genome editing and gene regulation in many eukaryotic organisms. Here, we report 2.6 and 2.2 A resolution crystal structures of two major Cas9 enzymes subtypes, revealing the structural core shared by all Cas9 family members. The architectures of Cas9 enzymes define nucleic acid binding clefts, and single-particle electron microscopy reconstructions show that the two structural lobes harboring these clefts undergo guide RNA-induced reorientation to form a central channel where DNA substrates are bound. The observation that extensive structural rearrangements occur before target DNA duplex binding implicates guide RNA loading as a key step in Cas9 activation. | |||
Structures of Cas9 Endonucleases Reveal RNA-Mediated Conformational Activation.,Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, Anders C, Hauer M, Zhou K, Lin S, Kaplan M, Iavarone AT, Charpentier E, Nogales E, Doudna JA Science. 2014 Feb 6. PMID:24505130<ref>PMID:24505130</ref> | |||
== | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
</div> | |||
[[Category: Doudna, J A | |||
[[Category: Jiang, F | ==See Also== | ||
[[Category: Lin, S | *[[Cas9|Cas9]] | ||
[[Category: Ma, E | *[[Endonuclease|Endonuclease]] | ||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Actinomyces naeslundii 'howell 279']] | |||
[[Category: Doudna, J A]] | |||
[[Category: Jiang, F]] | |||
[[Category: Lin, S]] | |||
[[Category: Ma, E]] | |||
[[Category: Cas9]] | [[Category: Cas9]] | ||
[[Category: Crispr-ca]] | [[Category: Crispr-ca]] |
Revision as of 12:09, 5 January 2015
Crystal structure of the Type II-C Cas9 enzyme from Actinomyces naeslundiiCrystal structure of the Type II-C Cas9 enzyme from Actinomyces naeslundii
Structural highlights
Publication Abstract from PubMedType II CRISPR-Cas systems use an RNA-guided DNA endonuclease, Cas9, to generate double-strand breaks in invasive DNA during an adaptive bacterial immune response. Cas9 has been harnessed as a powerful tool for genome editing and gene regulation in many eukaryotic organisms. Here, we report 2.6 and 2.2 A resolution crystal structures of two major Cas9 enzymes subtypes, revealing the structural core shared by all Cas9 family members. The architectures of Cas9 enzymes define nucleic acid binding clefts, and single-particle electron microscopy reconstructions show that the two structural lobes harboring these clefts undergo guide RNA-induced reorientation to form a central channel where DNA substrates are bound. The observation that extensive structural rearrangements occur before target DNA duplex binding implicates guide RNA loading as a key step in Cas9 activation. Structures of Cas9 Endonucleases Reveal RNA-Mediated Conformational Activation.,Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, Anders C, Hauer M, Zhou K, Lin S, Kaplan M, Iavarone AT, Charpentier E, Nogales E, Doudna JA Science. 2014 Feb 6. PMID:24505130[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|