Fumarase: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
Michal Harel (talk | contribs)
No edit summary
Michal Harel (talk | contribs)
No edit summary
Line 1: Line 1:
{{STRUCTURE_4adl|  PDB=4adl  | SIZE=400| SCENE= |right|CAPTION=Fumarase tetramer complex with malate  , [[4adl]] }}
{{STRUCTURE_4adl|  PDB=4adl  | SIZE=400| SCENE= |right|CAPTION=Fumarase tetramer complex with malate  , [[4adl]] }}


'''Fumarase''' is used in the citric acid cycle to conduct a transition step in the production of energy to make NADH. It metabolizes Fumarate in the cytosol, which becomes a byproduct of the urea cycle and amino acid catabolism. It catalyzes the addition of water to make S-Malate. This is a reversible reaction.
'''Fumarase''' is used in the citric acid cycle to conduct a transition step in the production of energy to make NADH. It metabolizes Fumarate in the cytosol, which becomes a byproduct of the urea cycle and amino acid catabolism. It catalyzes the addition of water to make S-Malate. This is a reversible reaction.  See also [[Krebs cycle step 7]].


==Other interesting information==
==Other interesting information==

Revision as of 12:30, 29 December 2014

Template:STRUCTURE 4adl

Fumarase is used in the citric acid cycle to conduct a transition step in the production of energy to make NADH. It metabolizes Fumarate in the cytosol, which becomes a byproduct of the urea cycle and amino acid catabolism. It catalyzes the addition of water to make S-Malate. This is a reversible reaction. See also Krebs cycle step 7.

Other interesting informationOther interesting information

Fumarase or fumarate hydratase is dominant in fetal and adult tissues and largely expressed in the skin, parathyroid, lymph, and colon There are two classes of Fumarases, which depend on the arrangement of their relative subunit, their metal requirement, and their thermal stability. Class I Fumarases can change their state or become inactive when exposed to heat or radiation. They are sensitive to superoxide anions and Fe2+ dependent. Class II Fumarases are found in eukaryotes and prokaryotes. They are iron-independent and thermal-stable. Fumarase deficiency is an autosomal recessive metabolic disorder distinguished by a deficiency of the enzyme Fumarate hydratase and indicated by an excess of Fumaric acid in the urine. It is common of infants with neurologic abnormalities and its potential causes include cytosolic and mitochondrial forms of Fumarase.

Fumarase ScenesFumarase Scenes




3D structures of fumarase3D structures of fumarase

Updated on 29-December-2014

ReferencesReferences

Wikipedia. <http://en.wikipedia.org/wiki/Fumarase>, Wikipedia. <http://en.wikipedia.org/wiki/Enolase>, University of Wisconsin- Eau Claire. <http://www.chem.uwec.edu/Webpapers_F99/Pages/Webpapers_F99/golnercm/Pages/descrip.html>, Virtual Chembook. Elmhurst College. <http://www.elmhurst.edu/~chm/vchembook/601glycolysisrx.html>

AuthorAuthor

Originally Completed by Sydney Park

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

Michal Harel, Jaime Prilusky, Alexander Berchansky