1j2f: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[1j2f]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1J2F OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1J2F FirstGlance]. <br>
<table><tr><td colspan='2'>[[1j2f]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1J2F OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1J2F FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1j2f FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1j2f OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1j2f RCSB], [http://www.ebi.ac.uk/pdbsum/1j2f PDBsum]</span></td></tr>
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1j2f FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1j2f OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1j2f RCSB], [http://www.ebi.ac.uk/pdbsum/1j2f PDBsum]</span></td></tr>
<table>
</table>
== Function ==
[[http://www.uniprot.org/uniprot/IRF3_HUMAN IRF3_HUMAN]] Key transcriptional regulator of type I interferon (IFN)-dependent immune responses and plays a critical role in the innate immune response against DNA and RNA viruses. Regulates the transcription of type I IFN genes (IFN-alpha and IFN-beta) and IFN-stimulated genes (ISG) by binding to an interferon-stimulated response element (ISRE) in their promoters. Acts as a more potent activator of the IFN-beta (IFNB) gene than the IFN-alpha (IFNA) gene and plays a critical role in both the early and late phases of the IFNA/B gene induction. Found in an inactive form in the cytoplasm of uninfected cells and following viral infection, double-stranded RNA (dsRNA), or toll-like receptor (TLR) signaling, becomes phosphorylated by IKBKE and TBK1 kinases. This induces a conformational change, leading to its dimerization and nuclear localization and association with CREB binding protein (CREBBP) to form dsRNA-activated factor 1 (DRAF1), a complex which activates the transcription of the type I IFN and ISG genes. Can activate distinct gene expression programs in macrophages and can induce significant apoptosis in primary macrophages.
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 31: Line 33:
</StructureSection>
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Fujita, T.]]
[[Category: Fujita, T]]
[[Category: Fukuhara, Y.]]
[[Category: Fukuhara, Y]]
[[Category: Horiuchi, M.]]
[[Category: Horiuchi, M]]
[[Category: Inagaki, F.]]
[[Category: Inagaki, F]]
[[Category: Mori, M.]]
[[Category: Mori, M]]
[[Category: Noda, N.]]
[[Category: Noda, N]]
[[Category: Okabe, Y.]]
[[Category: Okabe, Y]]
[[Category: Takahasi, K.]]
[[Category: Takahasi, K]]
[[Category: Terasawa, H.]]
[[Category: Terasawa, H]]
[[Category: Dna binding protein]]
[[Category: Dna binding protein]]
[[Category: Transcription factor]]
[[Category: Transcription factor]]

Revision as of 19:53, 25 December 2014

X-ray crystal structure of IRF-3 and its functional implicationsX-ray crystal structure of IRF-3 and its functional implications

Structural highlights

1j2f is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Resources:FirstGlance, OCA, RCSB, PDBsum

Function

[IRF3_HUMAN] Key transcriptional regulator of type I interferon (IFN)-dependent immune responses and plays a critical role in the innate immune response against DNA and RNA viruses. Regulates the transcription of type I IFN genes (IFN-alpha and IFN-beta) and IFN-stimulated genes (ISG) by binding to an interferon-stimulated response element (ISRE) in their promoters. Acts as a more potent activator of the IFN-beta (IFNB) gene than the IFN-alpha (IFNA) gene and plays a critical role in both the early and late phases of the IFNA/B gene induction. Found in an inactive form in the cytoplasm of uninfected cells and following viral infection, double-stranded RNA (dsRNA), or toll-like receptor (TLR) signaling, becomes phosphorylated by IKBKE and TBK1 kinases. This induces a conformational change, leading to its dimerization and nuclear localization and association with CREB binding protein (CREBBP) to form dsRNA-activated factor 1 (DRAF1), a complex which activates the transcription of the type I IFN and ISG genes. Can activate distinct gene expression programs in macrophages and can induce significant apoptosis in primary macrophages.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Transcription factor IRF-3 is post-translationally activated by Toll-like receptor (TLR) signaling and has critical roles in the regulation of innate immunity. Here we present the X-ray crystal structure of the C-terminal regulatory domain of IRF-3(175-427) (IRF-3 175C) at a resolution of 2.3 A. IRF-3 175C is structurally similar to the Mad homology domain 2 of the Smad family. Structural and functional analyses reveal phosphorylation-induced IRF-3 dimerization, which generates an extensive acidic pocket responsible for binding with p300/CBP. Although TLR and Smad signaling are evolutionarily independent, our results suggest that IRF-3 originates from Smad and acquires its function downstream of TLR.

X-ray crystal structure of IRF-3 and its functional implications.,Takahasi K, Suzuki NN, Horiuchi M, Mori M, Suhara W, Okabe Y, Fukuhara Y, Terasawa H, Akira S, Fujita T, Inagaki F Nat Struct Biol. 2003 Nov;10(11):922-7. Epub 2003 Oct 12. PMID:14555995[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Takahasi K, Suzuki NN, Horiuchi M, Mori M, Suhara W, Okabe Y, Fukuhara Y, Terasawa H, Akira S, Fujita T, Inagaki F. X-ray crystal structure of IRF-3 and its functional implications. Nat Struct Biol. 2003 Nov;10(11):922-7. Epub 2003 Oct 12. PMID:14555995 doi:10.1038/nsb1001

1j2f, resolution 2.30Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA