3pg8: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
<StructureSection load='3pg8' size='340' side='right' caption='[[3pg8]], [[Resolution|resolution]] 2.00Å' scene=''> | <StructureSection load='3pg8' size='340' side='right' caption='[[3pg8]], [[Resolution|resolution]] 2.00Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[3pg8]] is a 2 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3PG8 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3PG8 FirstGlance]. <br> | <table><tr><td colspan='2'>[[3pg8]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Atcc_43589 Atcc 43589]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3PG8 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3PG8 FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=AZI:AZIDE+ION'>AZI</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=AZI:AZIDE+ION'>AZI</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr> | ||
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CSD:3-SULFINOALANINE'>CSD</scene></td></tr> | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CSD:3-SULFINOALANINE'>CSD</scene></td></tr> | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3pg9|3pg9]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3pg9|3pg9]]</td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">aroF ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=2336 ATCC 43589])</td></tr> | |||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/3-deoxy-7-phosphoheptulonate_synthase 3-deoxy-7-phosphoheptulonate synthase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.5.1.54 2.5.1.54] </span></td></tr> | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/3-deoxy-7-phosphoheptulonate_synthase 3-deoxy-7-phosphoheptulonate synthase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.5.1.54 2.5.1.54] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3pg8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3pg8 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3pg8 RCSB], [http://www.ebi.ac.uk/pdbsum/3pg8 PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3pg8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3pg8 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3pg8 RCSB], [http://www.ebi.ac.uk/pdbsum/3pg8 PDBsum]</span></td></tr> | ||
</table> | </table> | ||
== Function == | |||
[[http://www.uniprot.org/uniprot/AROF_THEMA AROF_THEMA]] Catalyzes the condensation of phosphoenolpyruvate (PEP) and D-erythrose-4-phosphate (E4P) giving rise to 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP). | |||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Line 25: | Line 28: | ||
</StructureSection> | </StructureSection> | ||
[[Category: 3-deoxy-7-phosphoheptulonate synthase]] | [[Category: 3-deoxy-7-phosphoheptulonate synthase]] | ||
[[Category: Atcc 43589]] | |||
[[Category: Cross, P J]] | [[Category: Cross, P J]] | ||
[[Category: Dobson, R C.J]] | [[Category: Dobson, R C.J]] |
Revision as of 19:40, 25 December 2014
Truncated form of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase from Thermotoga maritimaTruncated form of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase from Thermotoga maritima
Structural highlights
Function[AROF_THEMA] Catalyzes the condensation of phosphoenolpyruvate (PEP) and D-erythrose-4-phosphate (E4P) giving rise to 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP). Publication Abstract from PubMedThe first step of the shikimate pathway for aromatic amino acid biosynthesis is catalyzed by 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAH7PS). Thermotoga maritima DAH7PS (TmaDAH7PS) is tetrameric, with monomer units comprised of a core catalytic (beta/alpha)(8) barrel and an N-terminal domain. This enzyme is inhibited strongly by tyrosine and to a lesser extent by the presence of phenylalanine. A truncated mutant of TmaDAH7PS lacking the N-terminal domain was catalytically more active and completely insensitive to tyrosine and phenylalanine, consistent with a role for this domain in allosteric inhibition. The structure of this protein was determined to 2.0 A. In contrast to the wild-type enzyme, this enzyme is dimeric. Wild-type TmaDAH7PS was co-crystallized with tyrosine, and the structure of this complex was determined to a resolution of 2.35 A. Tyrosine was found to bind at the interface between two regulatory N-terminal domains, formed from diagonally located monomers of the tetramer, revealing a major reorganization of the regulatory domain with respect to the barrel relative to unliganded enzyme. This significant conformational rearrangement observed in the crystal structures was also clearly evident from small angle X-ray scattering measurements recorded in the presence and absence of tyrosine. The closed conformation adopted by the protein on tyrosine binding impedes substrate entry into the neighboring barrel, revealing an unusual tyrosine-controlled gating mechanism for allosteric control of this enzyme. Tyrosine latching of a regulatory gate affords allosteric control of aromatic amino acid biosynthesis.,Cross PJ, Dobson RC, Patchett ML, Parker EJ J Biol Chem. 2011 Mar 25;286(12):10216-24. Epub 2011 Jan 30. PMID:21282100[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|