3pg8: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 2: Line 2:
<StructureSection load='3pg8' size='340' side='right' caption='[[3pg8]], [[Resolution|resolution]] 2.00&Aring;' scene=''>
<StructureSection load='3pg8' size='340' side='right' caption='[[3pg8]], [[Resolution|resolution]] 2.00&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[3pg8]] is a 2 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3PG8 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3PG8 FirstGlance]. <br>
<table><tr><td colspan='2'>[[3pg8]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Atcc_43589 Atcc 43589]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3PG8 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3PG8 FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=AZI:AZIDE+ION'>AZI</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=AZI:AZIDE+ION'>AZI</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr>
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CSD:3-SULFINOALANINE'>CSD</scene></td></tr>
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CSD:3-SULFINOALANINE'>CSD</scene></td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3pg9|3pg9]]</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3pg9|3pg9]]</td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">aroF ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=2336 ATCC 43589])</td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/3-deoxy-7-phosphoheptulonate_synthase 3-deoxy-7-phosphoheptulonate synthase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.5.1.54 2.5.1.54] </span></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/3-deoxy-7-phosphoheptulonate_synthase 3-deoxy-7-phosphoheptulonate synthase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.5.1.54 2.5.1.54] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3pg8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3pg8 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3pg8 RCSB], [http://www.ebi.ac.uk/pdbsum/3pg8 PDBsum]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3pg8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3pg8 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3pg8 RCSB], [http://www.ebi.ac.uk/pdbsum/3pg8 PDBsum]</span></td></tr>
</table>
</table>
== Function ==
[[http://www.uniprot.org/uniprot/AROF_THEMA AROF_THEMA]] Catalyzes the condensation of phosphoenolpyruvate (PEP) and D-erythrose-4-phosphate (E4P) giving rise to 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP).
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
Line 25: Line 28:
</StructureSection>
</StructureSection>
[[Category: 3-deoxy-7-phosphoheptulonate synthase]]
[[Category: 3-deoxy-7-phosphoheptulonate synthase]]
[[Category: Atcc 43589]]
[[Category: Cross, P J]]
[[Category: Cross, P J]]
[[Category: Dobson, R C.J]]
[[Category: Dobson, R C.J]]

Revision as of 19:40, 25 December 2014

Truncated form of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase from Thermotoga maritimaTruncated form of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase from Thermotoga maritima

Structural highlights

3pg8 is a 2 chain structure with sequence from Atcc 43589. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
NonStd Res:
Gene:aroF (ATCC 43589)
Activity:3-deoxy-7-phosphoheptulonate synthase, with EC number 2.5.1.54
Resources:FirstGlance, OCA, RCSB, PDBsum

Function

[AROF_THEMA] Catalyzes the condensation of phosphoenolpyruvate (PEP) and D-erythrose-4-phosphate (E4P) giving rise to 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP).

Publication Abstract from PubMed

The first step of the shikimate pathway for aromatic amino acid biosynthesis is catalyzed by 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAH7PS). Thermotoga maritima DAH7PS (TmaDAH7PS) is tetrameric, with monomer units comprised of a core catalytic (beta/alpha)(8) barrel and an N-terminal domain. This enzyme is inhibited strongly by tyrosine and to a lesser extent by the presence of phenylalanine. A truncated mutant of TmaDAH7PS lacking the N-terminal domain was catalytically more active and completely insensitive to tyrosine and phenylalanine, consistent with a role for this domain in allosteric inhibition. The structure of this protein was determined to 2.0 A. In contrast to the wild-type enzyme, this enzyme is dimeric. Wild-type TmaDAH7PS was co-crystallized with tyrosine, and the structure of this complex was determined to a resolution of 2.35 A. Tyrosine was found to bind at the interface between two regulatory N-terminal domains, formed from diagonally located monomers of the tetramer, revealing a major reorganization of the regulatory domain with respect to the barrel relative to unliganded enzyme. This significant conformational rearrangement observed in the crystal structures was also clearly evident from small angle X-ray scattering measurements recorded in the presence and absence of tyrosine. The closed conformation adopted by the protein on tyrosine binding impedes substrate entry into the neighboring barrel, revealing an unusual tyrosine-controlled gating mechanism for allosteric control of this enzyme.

Tyrosine latching of a regulatory gate affords allosteric control of aromatic amino acid biosynthesis.,Cross PJ, Dobson RC, Patchett ML, Parker EJ J Biol Chem. 2011 Mar 25;286(12):10216-24. Epub 2011 Jan 30. PMID:21282100[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Cross PJ, Dobson RC, Patchett ML, Parker EJ. Tyrosine latching of a regulatory gate affords allosteric control of aromatic amino acid biosynthesis. J Biol Chem. 2011 Mar 25;286(12):10216-24. Epub 2011 Jan 30. PMID:21282100 doi:10.1074/jbc.M110.209924

3pg8, resolution 2.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA