1m60: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1m60]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Equus_caballus Equus caballus]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1M60 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1M60 FirstGlance]. <br> | <table><tr><td colspan='2'>[[1m60]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Equus_caballus Equus caballus]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1M60 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1M60 FirstGlance]. <br> | ||
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=HES:ZINC+SUBSTITUTED+HEME+C'>HES</scene>< | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=HES:ZINC+SUBSTITUTED+HEME+C'>HES</scene></td></tr> | ||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1m60 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1m60 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1m60 RCSB], [http://www.ebi.ac.uk/pdbsum/1m60 PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1m60 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1m60 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1m60 RCSB], [http://www.ebi.ac.uk/pdbsum/1m60 PDBsum]</span></td></tr> | ||
<table> | </table> | ||
== Function == | |||
[[http://www.uniprot.org/uniprot/CYC_HORSE CYC_HORSE]] Electron carrier protein. The oxidized form of the cytochrome c heme group can accept an electron from the heme group of the cytochrome c1 subunit of cytochrome reductase. Cytochrome c then transfers this electron to the cytochrome oxidase complex, the final protein carrier in the mitochondrial electron-transport chain. Plays a role in apoptosis. Suppression of the anti-apoptotic members or activation of the pro-apoptotic members of the Bcl-2 family leads to altered mitochondrial membrane permeability resulting in release of cytochrome c into the cytosol. Binding of cytochrome c to Apaf-1 triggers the activation of caspase-9, which then accelerates apoptosis by activating other caspases (By similarity). | |||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 32: | Line 34: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Equus caballus]] | [[Category: Equus caballus]] | ||
[[Category: Qian, C | [[Category: Qian, C]] | ||
[[Category: Tang, W | [[Category: Tang, W]] | ||
[[Category: Tong, Y | [[Category: Tong, Y]] | ||
[[Category: Wang, J | [[Category: Wang, J]] | ||
[[Category: Yao, Y | [[Category: Yao, Y]] | ||
[[Category: Electron transport]] | [[Category: Electron transport]] | ||
[[Category: Six-coordinated zinc cyt c]] | [[Category: Six-coordinated zinc cyt c]] |
Revision as of 18:53, 25 December 2014
Solution Structure of Zinc-substituted cytochrome cSolution Structure of Zinc-substituted cytochrome c
Structural highlights
Function[CYC_HORSE] Electron carrier protein. The oxidized form of the cytochrome c heme group can accept an electron from the heme group of the cytochrome c1 subunit of cytochrome reductase. Cytochrome c then transfers this electron to the cytochrome oxidase complex, the final protein carrier in the mitochondrial electron-transport chain. Plays a role in apoptosis. Suppression of the anti-apoptotic members or activation of the pro-apoptotic members of the Bcl-2 family leads to altered mitochondrial membrane permeability resulting in release of cytochrome c into the cytosol. Binding of cytochrome c to Apaf-1 triggers the activation of caspase-9, which then accelerates apoptosis by activating other caspases (By similarity). Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedZinc-substituted cytochrome c has been widely used in studies of protein-protein interactions and photo-induced electron transfer reactions between proteins. However, the coordination geometry of zinc in zinc-substituted cyt c has not yet been determined; two different opinions about the coordination have been reached. Here the solution structures of zinc-substituted cytochrome c that might be five-coordinated and six-coordinated have been refined separately by using (1)H NMR spectroscopy, and the zinc coordination geometry was determined just by NOE distance constraints. Structural analysis of the energy-minimized average solution structures of both the pentacoordinated and hexacoordinated geometries indicate that that zinc in zinc-substituted cyt c should be bound to both His18 and Met80, which means that the zinc is six-coordinated. RMSD values of the family of 25 six-coordinated structures from the average structure are 0.66+/-0.13 A and 1.09+/-0.16 A for the backbone and all heavy atoms, respectively. A statistical analysis of the structure indicates its satisfactory quality. Comparison of the solution structure of the six-coordinated energy-minimized average structure of zinc-substituted cytochrome c with the solution structure of reduced cytochrome c reveals that for the overall folding the secondary structure elements are very close. The availability of the structure provides for a better understanding of the protein-protein complex and for electron transfer processes between Zn cyt c and other metalloproteins. Structural analysis of zinc-substituted cytochrome c.,Qian C, Yao Y, Tong Y, Wang J, Tang W J Biol Inorg Chem. 2003 Apr;8(4):394-400. Epub 2002 Dec 14. PMID:12761660[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|