4eb6: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 8: Line 8:
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4eb6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4eb6 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4eb6 RCSB], [http://www.ebi.ac.uk/pdbsum/4eb6 PDBsum]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4eb6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4eb6 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4eb6 RCSB], [http://www.ebi.ac.uk/pdbsum/4eb6 PDBsum]</span></td></tr>
</table>
</table>
== Function ==
[[http://www.uniprot.org/uniprot/D0VWZ0_SHEEP D0VWZ0_SHEEP]] Tubulin is the major constituent of microtubules. It binds two moles of GTP, one at an exchangeable site on the beta chain and one at a non-exchangeable site on the alpha chain (By similarity).[RuleBase:RU003505][SAAS:SAAS023123_004_019801] [[http://www.uniprot.org/uniprot/STMN4_RAT STMN4_RAT]] Exhibits microtubule-destabilizing activity.<ref>PMID:15039434</ref> <ref>PMID:12111843</ref> <ref>PMID:15014504</ref>  [[http://www.uniprot.org/uniprot/D0VWY9_SHEEP D0VWY9_SHEEP]] Tubulin is the major constituent of microtubules. It binds two moles of GTP, one at an exchangeable site on the beta chain and one at a non-exchangeable site on the alpha chain (By similarity).[RuleBase:RU003505]
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==

Revision as of 16:53, 25 December 2014

Tubulin-Vinblastine: Stathmin-like complexTubulin-Vinblastine: Stathmin-like complex

Structural highlights

4eb6 is a 5 chain structure with sequence from Ovis aries and Rattus norvegicus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, , , ,
Gene:Stmn4 (Rattus norvegicus)
Resources:FirstGlance, OCA, RCSB, PDBsum

Function

[D0VWZ0_SHEEP] Tubulin is the major constituent of microtubules. It binds two moles of GTP, one at an exchangeable site on the beta chain and one at a non-exchangeable site on the alpha chain (By similarity).[RuleBase:RU003505][SAAS:SAAS023123_004_019801] [STMN4_RAT] Exhibits microtubule-destabilizing activity.[1] [2] [3] [D0VWY9_SHEEP] Tubulin is the major constituent of microtubules. It binds two moles of GTP, one at an exchangeable site on the beta chain and one at a non-exchangeable site on the alpha chain (By similarity).[RuleBase:RU003505]

Publication Abstract from PubMed

Vinca-domain ligands are compounds that bind to tubulin at its inter-heterodimeric interface and favour heterogeneous protofilament-like assemblies, giving rise to helices and rings. This is the basis for their inhibition of microtubule assembly, for their antimitotic activities and for their use in anticancer chemotherapy. Ustiloxins are vinca-domain ligands with a well established total synthesis. A 2.7 A resolution structure of ustiloxin D bound to the vinca domain embedded in the complex of two tubulins with the stathmin-like domain of RB3 (T(2)R) has been determined. This finding precisely defines the interactions of ustiloxins with tubulin and, taken together with structures of other vinca-ligand complexes, allows structure-based suggestions to be made for improved activity. These comparisons also provide a rationale for the large-scale polymorphism of the protofilament-like assemblies mediated by vinca-domain ligands based on local differences in their interactions with the two tubulin heterodimers constituting their binding site.

Structural plasticity of tubulin assembly probed by vinca-domain ligands.,Ranaivoson FM, Gigant B, Berritt S, Joullie M, Knossow M Acta Crystallogr D Biol Crystallogr. 2012 Aug;68(Pt 8):927-34. Epub 2012 Jul 7. PMID:22868758[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Nakao C, Itoh TJ, Hotani H, Mori N. Modulation of the stathmin-like microtubule destabilizing activity of RB3, a neuron-specific member of the SCG10 family, by its N-terminal domain. J Biol Chem. 2004 May 28;279(22):23014-21. Epub 2004 Mar 22. PMID:15039434 doi:http://dx.doi.org/10.1074/jbc.M313693200
  2. Gavet O, El Messari S, Ozon S, Sobel A. Regulation and subcellular localization of the microtubule-destabilizing stathmin family phosphoproteins in cortical neurons. J Neurosci Res. 2002 Jun 1;68(5):535-50. PMID:12111843 doi:http://dx.doi.org/10.1002/jnr.10234
  3. Ravelli RB, Gigant B, Curmi PA, Jourdain I, Lachkar S, Sobel A, Knossow M. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature. 2004 Mar 11;428(6979):198-202. PMID:15014504 doi:http://dx.doi.org/10.1038/nature02393
  4. Ranaivoson FM, Gigant B, Berritt S, Joullie M, Knossow M. Structural plasticity of tubulin assembly probed by vinca-domain ligands. Acta Crystallogr D Biol Crystallogr. 2012 Aug;68(Pt 8):927-34. Epub 2012 Jul 7. PMID:22868758 doi:http://dx.doi.org/10.1107/S0907444912017143

4eb6, resolution 3.47Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA