1ro3: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1ro3]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Echis_carinatus Echis carinatus]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1RO3 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1RO3 FirstGlance]. <br> | <table><tr><td colspan='2'>[[1ro3]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Echis_carinatus Echis carinatus]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1RO3 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1RO3 FirstGlance]. <br> | ||
</td></tr><tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2ech|2ech]]</td></tr> | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2ech|2ech]]</td></tr> | ||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1ro3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ro3 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1ro3 RCSB], [http://www.ebi.ac.uk/pdbsum/1ro3 PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1ro3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ro3 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1ro3 RCSB], [http://www.ebi.ac.uk/pdbsum/1ro3 PDBsum]</span></td></tr> | ||
<table> | </table> | ||
== Function == | |||
[[http://www.uniprot.org/uniprot/DISI_ECHCA DISI_ECHCA]] Potent inhibitor of ligand binding to the integrins alpha-V/beta-3 (ITGAV/ITGB3), alpha-5/beta-1 (ITGA5/ITGB1) and alpha-IIb/beta-3 (ITGA2B/ITGB3). Competition with fibrinogen for the RGD recognition sites on the alpha-IIb/beta-3 integrin (glyco-protein IIb/IIIa complex) results in the inhibition of platelet aggregation and other antithrombotic properties such as an ability to prevent coronary thrombosis in animal models. Is also a potent inhibitor of bone resorption. This results from the blocking of the interaction of alpha-V/beta-3 integrin on the surface of osteoclasts with bone extracellular matrix. In addition, interaction with alpha-V/beta-3 also inhibits adhesion of human umbilical vein endothelial cells (HUVEC) to immobilized vitronectin and fibronectin.<ref>PMID:3198653</ref> <ref>PMID:2320569</ref> <ref>PMID:9269775</ref> | |||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 32: | Line 34: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Echis carinatus]] | [[Category: Echis carinatus]] | ||
[[Category: Calvete, J J | [[Category: Calvete, J J]] | ||
[[Category: Celda, B | [[Category: Celda, B]] | ||
[[Category: Esteve, V | [[Category: Esteve, V]] | ||
[[Category: Marcinkiewicz, C | [[Category: Marcinkiewicz, C]] | ||
[[Category: Monleon, D | [[Category: Monleon, D]] | ||
[[Category: Cell adhesion]] | [[Category: Cell adhesion]] | ||
[[Category: No regular secondary structure]] | [[Category: No regular secondary structure]] |
Revision as of 08:52, 25 December 2014
New structural insights on short disintegrin echistatin by NMRNew structural insights on short disintegrin echistatin by NMR
Structural highlights
Function[DISI_ECHCA] Potent inhibitor of ligand binding to the integrins alpha-V/beta-3 (ITGAV/ITGB3), alpha-5/beta-1 (ITGA5/ITGB1) and alpha-IIb/beta-3 (ITGA2B/ITGB3). Competition with fibrinogen for the RGD recognition sites on the alpha-IIb/beta-3 integrin (glyco-protein IIb/IIIa complex) results in the inhibition of platelet aggregation and other antithrombotic properties such as an ability to prevent coronary thrombosis in animal models. Is also a potent inhibitor of bone resorption. This results from the blocking of the interaction of alpha-V/beta-3 integrin on the surface of osteoclasts with bone extracellular matrix. In addition, interaction with alpha-V/beta-3 also inhibits adhesion of human umbilical vein endothelial cells (HUVEC) to immobilized vitronectin and fibronectin.[1] [2] [3] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedEchistatin is a potent antagonist of the integrins alpha(v)beta3, alpha5beta1 and alpha(IIb)beta3. Its full inhibitory activity depends on an RGD (Arg-Gly-Asp) motif expressed at the tip of the integrin-binding loop and on its C-terminal tail. Previous NMR structures of echistatin showed a poorly defined integrin-recognition sequence and an incomplete C-terminal tail, which left the molecular basis of the functional synergy between the RGD loop and the C-terminal region unresolved. We report a high-resolution structure of echistatin and an analysis of its internal motions by off-resonance ROESY (rotating-frame Overhauser enhancement spectroscopy). The full-length C-terminal polypeptide is visible as a beta-hairpin running parallel to the RGD loop and exposing at the tip residues Pro43, His44 and Lys45. The side chains of the amino acids of the RGD motif have well-defined conformations. The integrin-binding loop displays an overall movement with maximal amplitude of 30 degrees . Internal angular motions in the 100-300 ps timescale indicate increased flexibility for the backbone atoms at the base of the integrin-recognition loop. In addition, backbone atoms of the amino acids Ala23 (flanking the R24GD26 tripeptide) and Asp26 of the integrin-binding motif showed increased angular mobility, suggesting the existence of major and minor hinge effects at the base and the tip, respectively, of the RGD loop. A strong network of NOEs (nuclear Overhauser effects) between residues of the RGD loop and the C-terminal tail indicate concerted motions between these two functional regions. A full-length echistatin-alpha(v)beta3 docking model suggests that echistatin's C-terminal amino acids may contact alpha(v)-subunit residues and provides new insights to delineate structure-function correlations. Conformation and concerted dynamics of the integrin-binding site and the C-terminal region of echistatin revealed by homonuclear NMR.,Monleon D, Esteve V, Kovacs H, Calvete JJ, Celda B Biochem J. 2005 Apr 1;387(Pt 1):57-66. PMID:15535803[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|